Evaluation of the KanchanTM Arsenic Filter Under Various Water Quality Conditions of the Nawalparasi District, Nepal

Claudia M. Espinoza

Mater of Engineering Massachusetts Institute of Technology Department of Civil and Environmental Engineering

Abstract

In 2002, the Massachusetts Institute of Technology Department of Civil and Environmental Engineering partnered with the Environment & Public Health Organization to develop and disseminate the KanchanTM Arsenic Filter (KAF) for the low-cost removal of arsenic from drinking water in rural Nepal. In this system, arsenic is removed via absorption onto the surface of ferric hydroxide, or rust, by integrating locally available iron nails with a bio-sand filter.

The KAF filter has been successfully disseminated to approximately 24,000 households, corresponding to about 200,000 Nepalese, since 2002. However, recent studies have indicated that KAF may poorly remove arsenic concentrations, to filtered water arsenic levels above the Nepali government guideline (50 µg/L), under certain raw water conditions. The present study focused on identifying and determining the impact of raw water parameters on the arsenic removal efficiency of the KAF. These parameters included: arsenic, ferrous iron, dissolved oxygen, silica, phosphate, pH, hardness, chloride, manganese, and electrical conductivity concentrations. In addition, filter flow rate, installation date, location and a user survey was recorded. A total of 100 filters, of ages <1 years to 7 years, from 79 groundwater sources and 15 villages, primarily in the Nawalparasi District, were tested.

Groundwater conditions that did not promote the corrosion of the iron nails were found to relate to a poorly performing KAF. These conditions included groundwater Fe(II) concentrations (<3mg/L), Fe(II) concentrations after having passed though nails (<1.1 mg/L), groundwater chloride concentrations (<7 mg/L), and high hardness concentrations. In addition, low groundwater arsenic concentrations (<200µg/L) were observed to relate to filtered water arsenic concentrations lower than the Nepali standard. It is recommended to research ways to increase iron

corrosion in the KAF system so that it can be promoted in areas with various groundwater conditions.

Introduction

Naturally-occurring high arsenic concentrations in groundwater are a recognized problem in many regions of south and eastern Asian countries, including: Bangladesh, India, Vietnam, Cambodia and Nepal. High arsenic concentrations in groundwater are dependent on the geological, hydrogeolocial and geochemical conditions of the aquifers. Long-term consumption of high arsenic concentrations can lead to serious health effects such as arsenicosis and skin cancer. The World Health Organization (WHO) standard for allowable arsenic concentrations in drinking water is 10 µg/L (WHO: Guidelines for Drinking-water Quality, 2008). Many South Asian countries such as Nepal have set their own standard for allowable arsenic concentrations in drinking water to 50µg/L. However, concentrations as high as 5 mg/L have been detected in groundwater tube wells of East Asian countries (Smedley, 2003).

Arsenic contamination in the groundwater of the Terai was discovered in 1999 during exploratory arsenic testing project lead by the Department of Water Supply and Sewerage (DWSS) and the WHO (Panthi et al., 2006). Since this discovery, many efforts have been made by agencies involved in rural water supply to assess the occurrence of arsenic in Nepali groundwater. The combined sampling studies of over 740,000 tube wells by 12 separate institutions or organizations found that about 8% and 3% of the samples had arsenic concentrations that exceeded the WHO standard and the Nepali standard, respectively (Thakur et al., 2011). Overall, from these studies the District of Nawalparasi is observed to be the most affected area with the highest arsenic concentrations throughout the Terai (Figure 1).

Figure 1: Arsenic concentrations in the Terai Region of Nepal from combined studies of over 740,000 tube wells. The Nepali standard for arsenic levels in drinking water is 50 ppb (μ g/L). Source: Thakur et al., 2011.

A widespread implementation of tube wells beginning the 1980s as a pathogen-safe drinking water source exposed millions of people to arsenic contaminated drinking water. Two proposed solutions are finding alternative sources of water that are both pathogen and arsenic free and also treating arsenic contaminated water with appropriate technologies.

KanchanTM Arsenic Filter

The Nepal Water Project (NWP) in the Civil and Environmental Engineering (CEE) Department at MIT began in 1999, in collaboration with the local the Environment and Public Health NGO Organization (ENPHO). The two primary objectives of the NWP were: (1) to quantify the water quality issues with specific data and analysis, and (2) to make recommendations on a point-of-use water treatment system that is both culturally and technically accepted and effective (Halsey, 2000). The second phase of this pilot study from 2002-2003 found the arsenic biosand filter, which was branded and trademarked as the KanchanTM Arsenic Filter (KAF) in 2004, to be the most appropriate technology for the removal of arsenic in rural Nepal (Tabbal, 2003). From 2003- 2004 about 1,000 KAF filers were deployed throughout Nepal. Currently, the KAF filter has been disseminated to approximately 24,000 households.

The KAF is a modified Bio-sand Filter (BSF) for the removal of arsenic. The BSF, designed in the 1980s by the University of Calgary, is designed to operate on the principles of slow-sand filtration while incorporating a layer of standing water, typically 2 inches above the top fine sand layer. This layer of standing water facilitates the formation of a biofilm (*schmutzdecke*) layer for the predation of microbial contamination in the influent water (Ngai et al., 2006).

The KAF incorporates an arsenic removal mechanism into the BSF by adding a layer of iron nails into a diffuser basin above the BSF. In the KAF, arsenic is removed via adsorption onto the surface of iron species. As water is poured into the diffuser basin, it oxidizes the iron nails from Fe(0) to Fe(II). Dissolved oxygen in the water further oxidizes Fe(II) into Fe(III) which complexes as ferric hydroxide, Fe(OH)₃, more commonly known as rust. These dissolved ferric hydroxide particles then bind to the arsenic in the water creating an iron arsenic complex. This complex can then bind to the sand in the filter, removing it from the effluent water. This mechanism is similar to arsenic adsorption on zero-valent iron reported by Nikolaidis et al. 2003 and arsenic

adsorption on hydrous ferric oxides reported by Hussam et al. 2003. It should be noted that though the KAF was designed to have the arsenic adsorb onto the Fe(OH)₃ still bonded to the nails, the complex made would then be flushed down by the water into the sand layers. However, the exact location of the oxidation mechanisms and the point where the iron and the arsenic complexes (on the nails or in the sand layers) in the KAF is not known.

Figure 2: Diagram of the KAF, showing the location and arrangement of its components. Source: Murcott, 2010

Figure 3: KAF versions developed over the years. (Left to right) concrete square, 2002; concrete round, 2003; plastic hilltake, 2003; plastic GEM505, 2004. Source: Ngai, 2005.

Several models of the KAF have been developed over the years with an aim of improving the arsenic removal performance and the social acceptability of the filter: concrete square, concrete round, plastic square and GEM505 (**Figure 3**). The concrete KAF and the GEM505 KAF models were designed to provide a filtration rate of 25 and 15 L/hour, respectively, sufficient enough to supply water for a large family according the WHO guidelines (Howard, G. and Bartram, J., 2003). From February 2004 and 2005 ENPHO conducted a blanket testing of 1000 KAF systems, both concrete and plastic, throughout

the Terai (ENPHO, 2008). This study showed the KAF to have a removal efficiency of 85-99% for total coliform and of 90-93% for arsenic concentrations. In addition, 95% of the filters produced drinking water with arsenic concentrations below the Nepali guideline of 50 μ g/L (Ngai et al, 2006). For more information on the KAF's materials, cost and dissemination efforts in Nepal see Ngai et al., 2006 and Ngai et al., 2007.

Problems with the KAF

The National Drinking Water Quality Steering Committee (NDWQSC) of Nepal issued a 3rd party evaluation study of about 700 KAFs in 2009. This study found that the arsenic removal efficiency of the KAF was about 99% for influent arsenic concentrations less than 100 µg/L; however, for inlet arsenic concentrations greater than 100 µg/L, effluent arsenic concentrations were typically above the Nepali arsenic drinking water standard of 50 µg/L. In addition, the calendar year age of the KAF was observed to influence the arsenic removal performance of the filter. KAFs operating for less than one year had an arsenic removal efficiency of about 95%: however, 30% of the KAFs operating between 1-3 years and about 15% of the KAFs operating after 3 years had efficiency levels of <75%. Nonetheless, this 3rd party study found the KAF to be well performing (effluent arsenic concentrations below the Nepali standard) in all but 5% of the total sample size. The study observed that well performing and poorly performing filters were typically found within the same clusters. In particular, many of the clusters of poorly performing filters were located in the Nawalparasi District.

Another 3rd party study conducted by Chiew et al.. 2009 in Cambodia tested the arsenic removal performance of 3 concrete square KAFs over the course of 5 and 1/2 months. This study found that none of the filters tested removed inlet arsenic concentrations to below the Nepali standard. The main reason behind the poor arsenic removal performance of the KAF was attributed to a combination of high influent phosphate concentrations and low iron concentrations. Other internal studies of the KAF in Bangladesh showed percent arsenic removal performance between 76% -90 % in six GEM505 KAF models with influent iron groundwater concentrations of 6 mg/L.

Nepal Water Project 2011

The present study was developed in response to the reported poor performance of the KAF in particular areas of Nepal (i.e. the Nawalparasi district) and also in other South Asian countries. The uncertain

performance of the KAF is presumed to be due to the composition different chemical of influent groundwater from location to location. The Nawalparasi District, in addition to having clusters of poorly performing filters, has some of the highest arsenic groundwater concentrations in all of Nepal. Thus, the first objective of this study was to evaluate the arsenic removal performance of the KAF under the different groundwater conditions of the Nawalparasi district to determine if the influent groundwater was impeding the KAF mechanism in this area. The second objective was to make recommendations on design improvements and operating limits for the dissemination of the KAF within and outside of Nepal based on the findings of the evaluation.

The studied parameters included: arsenic, ferrous iron, dissolved oxygen, pH, silica, phosphate and hardness. High arsenic concentrations (> 100 µg/L) were seen to affect the KAF performance (NDWQSC, 2009; ENPHO, 2008). Since iron is the adsorption media for the arsenic removal of the filter, low concentrations of iron may lead to poor filter performance. Low dissolved oxygen levels and high pH levels promote the more soluble species of iron and arsenic, therefore, impacting the adsorption mechanism of the KAF. Phosphate and silicate are competing ions for adsorptions sites at the surface of iron oxides, thus the presence of either ion impedes the sorption of the other competing ions (Meng et al., 2000; Su and Puls, 200; Meng et al., 2002; Roberts et al., 2004). High hardness concentrations can precipitate out a calcium buildup on the nails, possibly preventing the oxidation process of the iron and obstructing the arsenic removal mechanism of the KAF. In addition, to account for other outside variables in the filter performance not related to the water chemistry conditions, the filter flow rate, installation date, location and a user survey was also recorded.

Experimental Section

Site Selection

The Nawalparasi District has some of the highest reported arsenic levels in Nepal; thus, it is a targeted region for filter distribution by many NGOs. Also, the NDWQSC study in 2009 identified this District as having clusters of poor performing filters. Individual villages within Nawalparasi were identified based on archived filter distribution lists recorded previously in a blanket KAF study in 2004-2005 by ENPHO. In addition, sale lists provided by local entrepreneurs of the KAF and contacts from ENPHO team members who previously distributed

the KAF via non-affiliated parties were an aid to the study. The targeted villages were in areas where the reported KAF effluent arsenic concentrations were above 50 μ g/L. In total, filters and groundwater sources in 15 different villages in the Nawalparasi District and 3 villages in the Rupandehi District were tested.

Selection of Filter Types

This study focused on the arsenic removal performance of the KAF for different groundwater parameters; therefore, to avoid the influence of structural or mechanical failures on the KAF's performance, filters were chosen based on the following criteria:

- (1) No cracks or leakage: Structural failures in the KAF could allow inflows of untreated water. Also, leakages could affect the filter flow rate, which is an indication of filter performance, as discussed below.
- (2) Groundwater arsenic concentration greater than 50 μ g/L: The Nepali standard for arsenic concentrations in drinking water is 50 μ g/L; therefore, filters were only tested with groundwater concentrations above this standard.
- (3) Maximum flow rate of 30 liters/hour: Flow rates greater than 30 L/hour were seen in ENPHO, 2008 to lead to significant decreases in the percentage of arsenic removal by the KAF. This is presumed to be due to low water contact time with the nails or sand layers.
- (4) Sufficient sand: The KAF was designed to have a 2-inch gap between the diffuser basin and the top sand layer. The consumer sometimes removes too much sand during cleaning or to increase flow rate, but this is not recommended and can lead to decreased filter life and increased filter flow rate.
- (5) Nails present and evenly spread: The contact of iron nails with the groundwater is essential for the arsenic removal mechanism of the KAF, especially with naturally low levels of iron in the groundwater. Therefore, large gaps in the iron layer, or the absence of nails altogether, will let the groundwater drip through the diffuser basin and out the effluent without the proper arsenic treatment.
- (6) No tap: Many consumers of the KAF like to install a tap into the outlet of the filter to control the volume of source water that is filtered or stored inside the KAF. This alteration allows them to collect the filtered water as needed throughout the day without adding in more source water continuously. However, this alteration will also inadvertently increase the

standing water level above the sand, which is designed to be 2-inches such that sufficient oxygen from the air can diffuse into the biofilm layer in the sand. The biofilm layer will otherwise consume all of the oxygen in the sand layers of the filter. A lack of oxygen in the KAF can change the oxidation state of arsenic and iron in the sand layers to its more soluble forms, As(III) and Fe(II), thus possibly leading to "spiked" arsenic concentrations in the effluent water.

From these criteria, only the KAF concrete square, concrete round and GEM505 models were tested in this study. KAF model 3 (plastic square) was widely distributed in the Nawalparasi District but it was not included in this study due to structural failures noted in the side bulging of the plastic container, thus it is no longer promoted or distributed by ENPHO.

Testing Method

Arsenic

Arsenic concentrations in the influent groundwater and effluent filtered water were measured using the Wagtech Arsenator® Digital Arsenic Test Kit¹. Studies show that the Arsenator can measure reliable arsenic concentration readings with a correlation of 0.95 and 0.96 with laboratory measurements of arsenic concentrations 0-100 µg/L (Sankararamakrishnan et al. 2008) and 0-250ug/L (Shukla et al., 2010) respectively. Testing methodology followed the Arsenator's instructional manual attached in Appendix C. The Arsenator used in the present study was borrowed from the Center for Affordable Water and Sanitation Technology (CAWST) of Canada.

Iron

Ferrous iron concentrations (Fe(II)) were measured in the influent groundwater, the water passing through the nails and dripping out of the diffuser basin ("nail water", **Figure 6**), and the effluent filtered water. Ferrous iron concentrations were measured using the HACH DR 27000 Portable Spectrophotometer² and HACH Ferrous Iron Reagent Powder Pillows³. The composition of the HACH reagent is about 10% 10-Phenanthroline and 90% sodium bicarbonate (HACH: MSDS-Ferrous Iron Reagent, 2009). If ferrous iron concentrations were present, the solution

¹ Product number: WAG-WE10500. Web:

http://www.wagtech.co.uk/

² Product number: DR2700-01B1. Web:

http://www.hach.com/

³ Product number: 103769. Web: http://www.hach.com/

would turn orange and the spectrophotometer would calculate the concentration of Fe(II) from the color intensity within a range of 0.02 to 3.00 mg/L. If the solution surpassed the detection limit, the sample would be diluted by $\frac{1}{2}$ (since our measurements of Fe(II) never exceeded 6 mg/l) using purchased bottled water, which indicated that it was reverse osmosis treated. Testing methodology followed the HACH Method 8186.

Figure 4: Collecting water sample after it has passed through the nails and is dripping from the diffuser basin into the sand layers. Hari Budhathoki (left) and Tirtha Raj Sharma Dhungana (right).

Silica

Silica concentrations were measured from only the groundwater sources using the HACH DR 2700 Portable Spectrophotometer and three silica reagents: citric acid, sodium molybdate, and the acid reagent⁴. The latter reagent has a composition of sulfamic acid and sodium chloride (HACH: MSDS-Acid Reagent, 2010). In the presence of silica concentrations, the sample will turn green with the reagents and the spectrophotometer can then calibrate the color intensity with the concentration within a range of 1 to 100 mg/L. Samples did not surpass the detection limit for silica, so dilution was not necessary. Testing methodology followed the HACH Method 8185.

Phosphate

Phosphate concentrations were only measured for the groundwater sources. Previous studies indicate that field kits for measuring phosphate concentrations do not prove to be very accurate. Therefore, groundwater samples were collected for each source and brought to ENPHO for laboratory analyses of phosphate concentrations. In the lab, phosphate was measured using an ammonium molybdate ascorbic acid reagent and a spectrophotometric instrument. Samples did not need to be preserved according to standard methods ("Standard Methods," 1995).

Dissolved Oxygen (DO)

DO concentrations were measured for the effluent water from each of the filters of interest. This testing took place in the field using the HACH Dissolved Oxygen Test kit, model OX-2P⁵. This field kit measures dissolved oxygen concentrations using the drop count titration method. The detection range is 0.2-4 mg/L (in increments of 0.2 mg/L) and 1-20 mg/L (in increments of 1mg/L). Testing methodology followed the HACH Method 8215.

Hardness

Hardness concentrations were measured for the influent groundwater and the effluent filtered water. Samples were collected from each tube well source and brought back to the ENPHO Lab for more accurate and precise measurement ranges than field kits can provide. Samples did not need to be preserved according to standard methods ("Standard Methods," 1995). In the lab, hardness was measured using the ethylenediaminetetraacetic acid (EDTA) titrimetric method. In addition, in the field, hardness measurements were estimated using the HACH 5 in 1 Water Quality Test strips⁶ for total hardness concentrations as CaCO₃ (0, 250 or 425 mg/L).

pH

The pH levels for both the influent groundwater and effluent filtered water were measured using the WaterWorksTM Extended Range pH Check Strips. The WaterWorksTM strips have a detection sensitivity in increments of 1 for pH 1-5 and 10-12 and in increments of 0.5 for pH 6-9.5. The total test time per sample is 30 seconds. In addition, the HACH 5 in 1 Water Quality Strips were also used to measure pH with a detection range pH 6.2-8.4 in increments of pH 0.6.

In addition, split samples for arsenic (16), total iron (16), dissolve oxygen (14) and silica (15) concentrations were collected in polyethylene bottles and brought back to the ENPHO lab for testing. Samples were preserved and tested in accordance to standard methods ("Standard Methods", 1995).

⁴ Product number (for all three reagents): 2429600. Web: http://www.hach.com/

⁵ Product number: 146900. Web: http://www.hach.com/

⁶ Product number: 2755250. Web: http://www.hach.com/

Sampling Methodology

After the filters were evaluated based on the criteria described in the section **Selection of Filter Types**, a systematic sampling procedure was followed to minimize sampling time and error from inconsistencies in sampling collection, as shown in **Figure 7** and described below:

Figure 5: Flowchart of the Nepal 2011 field study sampling methodology. Note: GW = groundwater.

Groundwater collection

Groundwater was collected directly from private or public tube wells. Some tube wells needed to be "primed" prior to use, meaning prepared by pouring in a small amount of water into the pump and applying suction so that the mechanism of the tube well would work. However, groundwater samples collected directly after the priming procedure would be a poor representation of the groundwater conditions, since it would contain a mixture of the "priming water". Thus, for consistency each tube well was pumped for a minimum of 60 seconds prior to collecting the groundwater sample in 500mL plastic beakers.

Measuring flow rate

The groundwater sample would then be used fill up the corresponding filter for flow rate measurements. The filter flow rates were measured using a 500mL plastic graduated cylinder and a stopwatch was used. If the flow rate was above 30 L/hour (or above 500mL/minute) the filter would not be included for testing. If the flow rate was less than or equal to 30 L/hour field testing would proceed.

Testing parameters in groundwater

The parameters tested in each groundwater sample were: arsenic, pH, ferrous iron and silica concentrations. In addition, groundwater samples would be collected and stored in 500mL polyethylene bottles for hardness and phosphate testing in the ENPHO lab. All groundwater tests per tube well would take an estimated 25 minutes to complete, with the arsenic test results (~20 minutes to complete) being the determining factor in order to continue testing. If the arsenic concentrations in the groundwater were less than the Nepali Standard for drinking water (50 µg/L), all further testing for the corresponding filter would discontinue. On the other hand, if the groundwater concentration of arsenic was above 50 µg/L filtered water collection would proceed.

Filtered water collection

For direct comparison of the arsenic removal performance of the KAFs, it was important to flush the filter out completely before collecting the filtered water sample, so that it corresponded to the tested groundwater source. Assuming a plug flow nature for the bio-sand filters (neglecting any dispersion), the volume of water poured into the filter would need to be greater than the filter pore volume in order to collect newly filtered water. Since both the GEM505 and the concrete square KAF models have a pore volume of about 5L, the filtered water sample would be collected after at least 5 L of the groundwater sample had passed though. The measured flow rate of each filter would allow us to know when enough time had passed (corresponding to 5 L of filtered water) before collecting the filter samples in 500 mL plastic beakers. The "nail water" sample would be taken by lifting up the basin holding the nails and collecting the dripping water (Figure 4).

Testing parameters in filtered water

The parameters tested from the filtered water sample were: arsenic, pH, and ferrous iron concentrations. The water sample for dissolved oxygen would be collected directly from the filter outlet and tested immediately. In addition, a filtered water sample would be collected and stored in a 250mL polyethylene bottle for hardness testing in the ENPHO lab.

If a tube well source was servicing more than one KAF filter, the groundwater from the source would be tested only once and the filtered water would be tested for each individual filter. In this step, it was assumed that the groundwater source would not change drastically over the course of a few hours. Resulting data from each groundwater and filtered

water sample would be documented in a notebook and later updated into an electronic spreadsheet. In addition, user survey results would be collected by ENPHO staff personnel in Nepali and later translated to English. Also, the stored groundwater and filtered water samples would be labeled to match the corresponding test serial number on the data sheet. The testing instruments would then be cleaned and re-supplied for the next round of testing.

Results and Discussion

Effects of chemical parameters

This section will present the results of all chemical parameters tested in the field. Filter performance was determined by the effluent filtered water arsenic concentrations relative to the Nepali standard for arsenic in drinking water of 50 µg/L. The parameters measured were graphed against the effluent arsenic concentrations to observe any relationship and correlation between the two data sets. Also, the KAFs were evaluated based on the percent arsenic removal and the effluent arsenic concentration levels relative to the Nepali standard. The parameter measurements corresponding to each filter were graphed against the percent arsenic removal to observe any correlation. A regression analysis was performed to determine the significance of any perceived correlation. An R^2 value above 0.0645 for 100 samples was taken to be significant to the 0.01 (Downie and Heath, 1965). Associated errors in measured values were estimated using previous studies and calibration curves against standards and split sample values tested by ENPHO (Appendix D). Overall, 100 separate KAFs were tested, corresponding to 79 groundwater sources and 101⁷ filtered water samples. Thus, the total sample size for all parameters was 101, with the exception of ferrous iron (N=100), phosphate (N=97), and hardness (N=97) readings. Raw data collected is presented in Appendix G.

Arsenic

Arsenic concentration measurements ranged from 0 non-detectable $(ND)^8$ to a maximum of 500 µg/L (upper detection limit). Figure 6 displays an overview of the arsenic concentration ranges for both influent groundwater and effluent filtered water sources. Most filters were observed to remove some fraction of influent groundwater arsenic concentrations. There was a 58:43 ratio between well performing and poorly performing filters. Well

performing filters removed on average 91% of the inlet arsenic concentration, while poorly performing filters removed on average only 50% of the inlet arsenic concentration. However, there was no correlation ($\mathbf{R}^2 = 0.0288$) between inlet groundwater arsenic concentration and arsenic removal performance (**Figure 7**). There was, though, an observed relationship between influent arsenic concentrations below 200µg/L and effluent arsenic concentrations below the Nepali standard (**Figure 8**). About 93% of the samples (N=27) with groundwater concentrations below 200µg/L correspond to a filtered water arsenic concentration below 50µg/L.

Figure 6: Arsenic concentrations in groundwater and filtered water samples. Error: +/- 25% (As $\leq 100 \ \mu g/L$) and +/- 50 $\mu g/L$ (As >100 $\mu g/L$). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$).

Figure 7: Groundwater arsenic concentrations vs. percent arsenic removal of the KAFs. Error: +/- 25%

⁷ Filter number 43 and 53 are the same GEM505 filter

tested with the same groundwater source on two separate days.

⁸ Below detection limit of the measuring instrument

Figure 8: Groundwater arsenic concentrations vs. filtered water arsenic concentrations. Error: +/-25% (As \leq 100 µg/L) and +/-50 µg/L (As >100 µg/L). Solid red line: Nepali arsenic drinking water standard (50 µg/L). Dotted green line: shift from mostly well performing filters (left) to both poor and well performing filters (right).

Iron

Ferrous iron (Fe(II)) concentrations ranged from 0 ND to 7.4 mg/L in groundwater, 0 ND to 1.8 mg/L in filtered water, and 0 ND to 3 mg/L in the nail water sources. Overall, Fe(II) concentrations in the groundwater and nail water were higher in the well performing filters than the poorly performing filters. Also, high groundwater Fe(II) concentration correlate significantly with low effluent arsenic concentrations $(R^2=0.114)$ and with high percent arsenic removal $(R^2=0.153)$ (Figure 9 and Figure 10). Similarly, high nail water Fe(II) concentrations correlate significantly with low effluent arsenic concentrations $(R^2=0.085)$ and with high percent arsenic removal $(R^2=0.133)$ (Figure 11 and Figure 12). In addition, a strong relationship between effluent arsenic concentrations below the Nepali standard and both Fe(II) concentrations >3mg/L in groundwater and >1.1 mg/L in nail water samples was observed. Furthermore, most of the Fe(II) concentrations after the nails were due to influent groundwater Fe(II) concentrations but there was no correlation with delta Fe(II) values (groundwater minus nail water Fe(II) concentrations) and effluent arsenic concentrations (Figure 13). Fe(II) concentrations in the effluent filtered water of well performing filters were on average lower than the WHO standard for total iron concentrations in drinking water (0.3 mg/L), but higher for poorly performing filters (WHO: Guidelines for Drinking-water Ouality, 2008). Regression analysis showed that Fe(II) concentrations in the filter water were not significantly correlated to effluent arsenic concentrations (Appendix E).

Figure 9: Fe(II) concentrations in groundwater vs. filtered water arsenic concentrations. Error: +/-25% (As $\leq 100 \mu g/L$), $+/-50 \mu g/L$ (As $>100 \mu g/L$), +/-0.03 mg/L (Fe $\leq 1mg/L$), and +/-20% (Fe > 1mg/L). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$). Dotted green line: shift from mostly well performing filters (right) to both poor and well performing filters (left).

Figure 10: Fe(II) concentrations in groundwater vs. percent arsenic removal. Error: +/- 25% (As), +/- 0.03 mg/L (Fe ≤ 1 mg/L), and +/- 20% (Fe > 1mg/L).

Figure 11: Fe(II) concentrations after the nails vs. arsenic concentrations in the effluent filtered water. Error: +/-25% (As $\leq 100 \ \mu g/L$), $+/-50 \ \mu g/L$ (As $>100 \ \mu g/L$), $+/-0.03 \ mg/L$ (Fe $\leq 1 \ mg/L$), and +/-20% (Fe $> 1 \ mg/L$). Solid red line: Nepali arsenic drinking water standard (50 $\ \mu g/L$). Dotted green line: shift from mostly well performing filters (right) to both poor and well performing filters (left).

Figure 12: Fe(II) concentrations in the nail water vs. percent arsenic removal. Error: +/- 25% (As), +/- 0.03 mg/L (Fe ≤ 1 mg/L), and +/- 20% (Fe > 1mg/L).

Figure 13: Delta Fe(II) concentrations (Groundwater minus Nail Water) vs. percent arsenic removal. Error: +/-25% (As), +/- 0.03 mg/L (Fe ≤ 1 mg/L), and +/- 20% (Fe > 1mg/L).

Hardness

Measurements of hardness as CaCO₃ ranged from 140 mg/L to 508 mg/L. Stored samples were measured in the ENPHO Lab using the EDTA titration method with a reported analytical error of 10%. Average hardness concentrations were not significantly different between the groundwater and filtered water sources or between the well performing and poorly performing filters. Regression analysis showed that there is not a significant correlation between hardness concentrations in the groundwater and arsenic concentrations in the filtered water $(R^2=0.056)$ (Figure 14). However, there is an observed relationship in hardness concentrations in the groundwater above 350 mg/L and arsenic concentrations in the filtered water below the Nepali standard. In addition, there was a high significant correlation between groundwater hardness concentrations and percent arsenic removal (R²= 0.135) (Figure 15). In part, the relationships observed between hardness and arsenic could be due the high correlation ($R^2=0.422$) seen between groundwater hardness concentrations and Fe(II) levels after the nails (Figure 16).

Figure 14: Total hardness concentration in groundwater vs. filtered water arsenic concentrations. Error: +/- 25% (As $\leq 100 \ \mu g/L$), +/-50 $\mu g/L$ (As >100 $\mu g/L$), and +/-10% mg/L (hardness). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$). Dotted green line: shift from mostly well performing filters (right) to both poor and well performing filters (left).

Figure 15: Hardness concentrations in the groundwater vs. percent arsenic removal. Error: +/- 25% (As) and +/- 10% (hardness).

Figure 16: Groundwater Hardness vs. Fe(II) concentrations after the nails. Error: +/-0.03 mg/L (Fe ≤ 1 mg/L), +/-10% (Fe >1mg/L), and +/-10% (hardness).

Total phosphorus, silica and dissolved oxygen did not have any correlation or relationship with the percent arsenic removal performance of the KAF and the effluent arsenic concentrations, relative to the Nepali standard. Low groundwater pH values did show a slight relationship with effluent arsenic concentrations below the Nepali standard, however there was not enough data points or any significant correlation in the data set. Also, location and social factors were not observed to strongly affect the filter performance. Figures and tables for these measurements are found in Appendix E and Appendix F. Raw data for the collected user survey is presented in Appendix H.

Overall, field data analysis suggested that the performance of the KAF was related to the ferrous iron levels of the groundwater and nail water, as well as the hardness of the inlet water source. To further explore the cause of low Fe(II) levels after the nails, new parameters relating to corrosion (chloride, electrical conductivity, and manganese) were tested in the ENPHO lab following the field study. In addition, pH levels were retested from the stored groundwater samples to verify the pH measurements from the pH test strips.

Effect of corrosion parameters

Groundwater samples collected in the field for the analysis of hardness and phosphate concentrations in the ENPHO lab were used to measure the new testing parameters. These samples were stored in labeled polyethylene bottles for about 10-12 weeks prior to One groundwater the new testing. sample (corresponding to three poorly performing filters) and a couple other samples were misplaced or missing so the new sample size for the following parameters is 96. The estimated error reported by ENPHO for all new parameter tests is +/-10%. In addition, tested manganese concentrations were mostly all below the instrument detection limit (<0.2 mg/L) so it is not included in the proceeding test results.

Chloride

Chloride concentrations in the water were ranged from 0 ND to 91 mg/L. **Figure 17** shows a strong relationship between chloride levels above 7mg/L and effluent arsenic concentrations below the Nepali standard; however, there was no significant correlation between the two parameters. Yet, there was a significant, though small, correlation ($R^2 = 0.068$) between high chloride concentrations and high dissolved iron concentrations ($R^2=0.68$) (**Figure 18**). Thus, these observations show that chloride may be a notable measure for dissolved iron concentrations but not directly related to arsenic concentrations or KAF performance.

Figure 17: Groundwater chloride concentrations vs. effluent arsenic concentrations. Error: 25% (As \leq 100 µg/L), +/- 50 µg/L (As >100 µg/L) and +/- 10% (chloride). Solid red line: Nepali arsenic drinking water standard (50 µg/L). Dotted green line: shift from mostly well performing filters (right) to both poor and well performing filters (left).

Figure 18: Groundwater chloride concentrations vs. Fe(II) concentrations after the nails. Error: +/- 0.03 mg/L (Fe \leq 1mg/L), +/- 10% (Fe > 1mg/L) and +/- 10% (chloride). Dotted green line: shift from mostly well performing filters (right) to both poor and well performing filters (left) from the previous graph.

Statistical Analysis of All Parameters

Factor analysis is a statistical method used to describe the variability among a large set of observed parameters to identify the number and loadings of unobserved variables referred to as factors. For this data, a factor of one was assumed in order to calculate the factor loading matrix of the model to observe any joint variations among our parameter outputs that would identify interdependencies between the measured parameters and the arsenic removal performance. The "factoran" syntax in MATLAB was used to calculate the maximum likelihood estimate of the factor loading matrix (A) in the factor analysis model. The computed factor loading and variance values are shown in Table 1. This analysis shows a notable interdependence relationship between Fe(II) (groundwater, filtered water and nail water), hardness (groundwater and filtered water), groundwater chloride and percent arsenic removal. This further confirms our graphical findings that identified the relationship between Fe(II), hardness and chloride, and how they can be related to the KAF performance.

using one common factor (N=96).							
Parameter	Factor Loading	Variance					
% Arsenic Removal	0.4613	0.7872					
GW Arsenic	0.0007	0.9999					
FW Arsenic	-0.3762	0.8584					
GW Fe(II)	0.6894	0.5247					
FW Fe(II)	0.5185	0.7312					
Nail Fe(II)	0.7144	0.4896					
GW Hardness	0.8859	0.2151					
FW Hardness	0.8815	0.2229					
GW Silica	0.0563	0.9968					
GW Phosphate	0.0981	0.9904					
FW Dissolved Oxygen	-0.3906	0.8474					
GW pH	-0.1718	0.9705					
FW pH	-0.0934	0.9913					
Flow	-0.1563	0.9756					
Age	-0.0017	0.9999					
GW Electrical Conductivity	0.0855	0.9927					
GW Chloride	0.5207	0.7289					

Table 1: Factor loading and variance for each parameter using one common factor (N=96).

GW = groundwater; FW = filtered water; Shaded parameters are shown to be related.

In addition, the Generalized Linear Model (GLM) was used to find the linear relationship between a dependent (or response) variable *Y*, and a set of predictor variables, the *X*'s, such that:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

Where b_0 is the intercept coefficient and the b_i values are the regression coefficients (for variables 1 through *n*). The MATLAB syntax "glmfit" was used to compute the *bo* and *bi* values. For this analysis the Y vector was the arsenic removal performance of each filter and the X matrix was only the measured groundwater parameters (**Table 2**).

Table 2: Regression coefficients for the groundwater parameters using the GLM model (N=96). Note: GW = groundwater

Parameter	b (regression coefficient)
(bo) coefficient	98.72
GW Arsenic	-0.0424
GW Fe	4.4456
Nail Fe	4.9664
GW Hardness	0.0466
Silica	0.2168
Phosphorous	-12.2943
GW pH	-4.8597
conductivity	-0.0058
chloride	-0.1325

This analysis shows that the groundwater arsenic, phosphorus, groundwater pH, conductivity and chloride concentrations negatively affect the percent arsenic removal performance with an increase in concentration. Similarly, groundwater iron, nail water iron, groundwater hardness and silica all contribute positively to the arsenic removal performance of the filter with an increase in concentration. Though these models give us a more sophisticated analysis of our large data set, it should be looked at with consideration of the sample size and the variability of other factors not accounted for, such as the social and filter specific characteristics (i.e. flow rate, age), in non-controlled testing environment.

Conclusion and Recommendations

The data points to three major groundwater parameters that may affect the arsenic removal performance of the KAF: the influent groundwater ferrous iron concentration, the ferrous iron concentration present after contact with the nails, and the inlet groundwater hardness concentrations. In addition, it was observed that the KAF typically fails when the groundwater arsenic concentrations are \geq 200µg/L, the ferrous iron concentrations of the nails are < 1.1mg/L and the groundwater chloride concentrations are < 7 mg/L. This range contained 82% of the studied poorly performing filters (N=39) as opposed to only 15% of the well performing filters (N=58). Thus, these findings suggest that groundwater conditions that do not promote the corrosion of the iron nails and have high inlet arsenic concentrations may result in a poorly performing KAF.

The corrosiveness of the groundwater was observed though the measured hardness (Ca^+ ions) and chloride concentrations. There was a significant correlation (R²=0.422) between high ferrous iron concentrations after contact with the nails and high hardness concentrations in the groundwater. There was also a significant correlation ($R^2=0.068$) between high ferrous iron concentrations after contact with the nails and high chloride groundwater concentrations. In addition, it was observed visually from Figure 17 that the filters were likely to perform well with chloride levels in the groundwater higher than 7 mg/L. Also, observed was a relationship between groundwater arsenic concentrations $\geq 200 \mu g/L$ and filtered water arsenic levels below the Nepali standard. For groundwater arsenic concentrations \geq 200µg/L, the minimum percent arsenic removal required is 75% to meet the Nepali standard. The average percent arsenic removal of the poorly performing filters in this study (N=42) was 50+/-26 % (with a range of 0-80 % removal); therefore, some of the labeled "poorly performing" filters could meet the Nepali standard with inlet arsenic concentrations <200 μ g/L. Since the average groundwater arsenic concentration from the samples observed in this study (N=79) was >200 μ g/L, filter performance should be evaluated with regards to these high inlet arsenic concentrations for the dissemination of the filter into various locations.

Groundwater pH concentrations observed in this study did not have a significant correlation between arsenic concentrations in the effluent water. Yet, it is important to note that low groundwater pH levels (< pH=6) were related to arsenic effluent concentrations below the Nepali standard; however, low groundwater levels only accounted for 7% of the total measured groundwater pH data. Further studies are recommended to confirm this observation and to determine the effect of pH on KAF's performance. Other studies are necessary to pin-point the location where the different oxidation states of the iron occur within the KAF mechanism. Particularly, it is not known if low ferrous iron concentrations after contact with the nails correspond to low production of ferrous iron by the nails or the fast oxidation of ferrous iron to ferric iron. Considering that the corrosion rate of the nails was seen to be an influential factor in the filter's performance, resolving this ambiguity will further help to identify the critical parameters that may drive the KAF's arsenic removal mechanism.

In addition, further studies are necessary to see how the KAF performs in groundwater conditions with high levels of competing ions. The groundwater observed in Nepal on average had very low concentrations of phosphate (0.2 mg/L) compared to the average groundwater concentrations in other South Asian countries (>1mg/L). Since high concentrations of phosphate or silicate have been previously observed to impede the adsorption of arsenic onto ferric oxides, more research should be done on how to improve the filter with groundwater conditions that do not promote iron corrosion and have high concentrations of phosphate and silicate. This is especially recommended for the safe dissemination of this filter into other South Asian countries with more complex groundwater conditions.

Lastly, it is recommended to study and incorporate the use of new local components in the KAF system to increase iron corrosion. Due to the observed correlations between high dissolved iron and high hardness or high chloride concentrations, researching the possible incorporation and effect of adding local hardness or chloride sources (i.e. limestone or rock salt) is an advised. This includes studying the quantity and frequency of incorporating the new component such that it is safe for the users to consume, socially or economically desirable and is effective for the removal of arsenic from raw groundwater, prior to distribution.

Acknowledgements

Firstly, many thanks to Raju Shretha who passed away before the present study was complete. Raju was a dear friend and key component of the execution of this study - we couldn't have done it without him. Thank you Raju for all your hard work and dedication, you will truly be missed. I would also like to thank all of those parties involved in the making, execution and publication of this study: Raju Shretha, Chintu Thapa, Hari Budhathoki, Tirta Sharma, Bipin Dangol, Susan Murcott, Tommy Ngai, Harry Hemond, the entire ENPHO Staff, the MIT MEng program, the MIT Legatum Center, and the wonderful people of Nepal. In addition, I would like to thank my family and friends, in particular: Mami, Papi, Jito, Stephen, Dorothy, and Polina. Literally, I could not have done this without you.

References

- Chiew, H., Sampson, M. L., Huch, S., Ken, S., and Bostick, B. C. (2009). Effect of Groundwater Iron and Phosphate on the Efficacy of Arsenic Removal by Iron-Amended BioSand Filters. *Environmental Science and Technology*, 43, 6295-6300.
- Downie, N. M. and Heath, R. W. (1959). Basic Statistical Methods. New York: Harper & Row
- Eaton, A. D., Clesceri, L. S., and Greenberg, A. E. (Eds.). (1995). Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association, American Water Works Association, and Water Environment Federation.
- Environment and Public Health Organization. (2008). DM evaluation database analysis Jan08 full [Data file]. Retrieved from: Tommy K. K. Ngai
- HACH (2009). Material Safety Data Sheet (MSDS) for Ferrous Iron Reagent. MSDS No: M00024. Retrieved from: HACH.
- HACH (2010). Material Safety Data Sheet (MSDS) for Acid Reagent (Silica reagent 3). MSDS No: M00025. Retrieved from: HACH.
- Halsey, P. M., (2000) . Arsenic Contamination Study of Drinking Water in Nepal. (Master of Engineering thesis). Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard, G. and Bartram, J. (2003). Domestic Water Quantity: Service Level and Health, World Health Organization WHO/SDE/WSH 03.02.
- Hussam, A., Habibuddowla, M., Alauddin, M., Hossain, Z. A., Munir, A. K. M., and Khan, A. H. (2003). Chemical fate of arsenic and other metals in

groundwater of Bangladesh: experimental measurement and chemical equilibrium model. *Journal of Environmental Science and Health*, A38(1), 71–86.

- Meng, X., Bang, S., and Korfiatis, G. P. (2000). Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. *Water Research*, 34(4), 1255-1261.
- Meng, X., Korfiatis, G. P., Bang, S., and Bang, K. W. (2002). Combined effects of anions on arsenic removal by iron hydroxides. *Toxicology Letters*, 133 (1), 103-111.
- Murcott, S. (2010). *MEng 2011 Nepal Susan intro presentation* [PDF File]. Retrieved from: Susan Murcott.
- National Drinking Water Quality Steering Committee (NDWQSC) and CEMAT Laboratory Pvt. Ltd. (2009). Preliminary findings of KAF evaluation study [PowerPoint Slides]. Meeting, 2 February, 2009, DWSS, Meeting Hall. Retrieved from: Susan Murcott.
- Ngai, T. K. K., Murcott, S., Shrestha, R. R., Dangol, B., and Maharjan, M., (2006). Development and Dissemination of KanchanTM Arsenic Filter in Rural Nepal. *Water Science & Technology: Water Supply*, 6(3), 137-146.
- Ngai, T. K. K. (2005). *KanchanTM Arsenic Filter: Research Findings* [PowerPoint Slides]. Center for Affordable Water and Sanitation Technology (CAWST), Lunch and Learn #4. 18 October 2005. Calgary, Canada.
- Ngai, T. K. K., Shrestha, R. R., Dangol, B., Maharjan, M., and Murcott, S. E. (2007). Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. *Journal of Environmental Science and Health Part A*, 42, 1879-1888.
- Nikolaidis, N. P. ; Dobbs, G. M. ;Lackovic, J. A. Arsenic removal by zero-valentiron: field, laboratory and modeling studies. *Water Resour*. 2003, 37(6),1417– 1425.
- Roberts, L. C., Hug, S. J., Ruettimann, T., Billah M., Khan, A. W. and RahmanM. T. (2004). Arsenic Removal with Iron(II) and Iron(III) in Waters with High Silicate and Phosphate Concentrations. *Environmental Science and Technology*, 38, 307-315.
- Sankararamkrishnan, N., Chauhan D. C., Nickson, R. T., Tripathi, R.M. and Iyengar, L. (2008). Evaluation of two commercial field test kits used for screening of groundwater for arsenic in Northern India. *Science of The Environment*, 401(1-3), 162-167
- Shukla, D. P., Dubey, C. S., Singh, N. P., Tajbakhsh, M., and Chaudhry, M. (2010). Sources and controls of arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. *Journal of Hydrology*, 395 (1-2), 49-66.
- Smedley, P. (2003). Chapter 7: Arsenic in groundwater south and east Asia. *British Geological Survey*, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK

- Su C. and Puls. R. W. (2001). Arsenate and Arsenite Removal by Zerovalent Iron: Effects of Phosphate, Silicate, Carbonate, Borate, Sulfate, Chromate, Molybdate, and Nitrate, Relative to Chloride. *Environmental Science and Technology*, 35, 4562-4568.
- Tabbal, G., (2003). Technical and Social Evaluation of Three Arsenic Removal Technologies in Nepal. (Master of Engineering thesis). Massachusetts Institute of Technology, Cambridge, MA, USA
- Thakur, J. K., Thakur, R. K., Ramanathan, A. L., Kumar, M., and Singh, S. K. (2010). Arsenic Contamination of Groundwater in Nepal – An Overview. *Water*, 3, 1-20
- Wagtech, WTD (2011). Arsenator Digital Arsenic Test Kit. Retrieved from: http://www.wagtech.co.uk/products/water-andenvironmental/water-test-kits/arsenator%C2%AEdigital-arsenic-test-kit
- World Health Organization (WHO). (2008). Guidelines for Drinking-water Quality, 3rd edition incorporating the 1st and 2nd Addenda, 1(Recommendations). Geneva, Switzerland.

MIT	– Massachusetts Institute of Technology
CEE	– Civil and Environmental Engineering
ENPHO	– Environment and Public Health Organization
KAF	– Kanchan TM Arsenic Filter
NWP	– Nepal Water Project of MIT
NGO	– Non-governmental Organization
NDWQSC	- National Drinking Water Quality Steering Committee
As	- Arsenic
Fe	– Iron
Р	– Phosphorous (refers to phosphate in this context)
Si	– Silicon (refers to silica/silicate in this context)
DO	– Dissolved oxygen
WHO	– World Health Organization
mg/L	– milligrams per Liter
µg/L	– micrograms per Liter
L/hour	– Liters per hour
Lab	– Laboratory
ND	– Non-detectable
BSF	– Bio-Sand Filter
DWSS	– Department of Water Supply and Sewerage
$Fe(II) \text{ or } Fe^{2+}$	– Ferrous iron
$Fe(0)$ or Fe^0	– Zero valent iron
Fe(III) or Fe ³⁺	– Ferric iron
CAWST	- Center for Affordable Water and Sanitation
VDC	 Village Development Committees
EDTA	– Ethylenediaminetetraacetic acid
GW	– Groundwater
L	– liter

Appendix A: Abbreviations

Appendix B : User Survey

The following survey was used to document the user and location of each studied KAF. In addition, other details related to the type of KAF and reported or observed maintenance was recorded.

Date and Tim	ie							
District								
VDC								
Ward No.								
Tole								
KANCHAN A	RSENIC FIL	TER I	NFORMAT	ION				
Type of KAF			(1) Concre	te, round		(4) Plastic, s	square	
			(2) Concre	te square		(5) Gem505	j	
			(3) Plastic,	round		(6) Fibergla	SS	
KAF Provided	d by		(1) NRCS			(4) Others,	specify:	
			(2) RWSS	SP				
			(3) RWSS	FDB				
KAF Installati	on Date							
qality of iron r	nails		(1) not rusted		(2) mode	(2) moderatly rusted (3) well rus		
Number of K	AF Housholds	;						
Number of K	AF Users							
How many lite	ers of water d	0	(1) less that	an 10 L		(4) 30 to 40	L	
you filter each	n day?		(2) 10 to 20)L		(5) 40 to 50	L	
-			(3) 20 to 30)L		(6) over 50	L	
Filter current	in use?		(1) Yes, ev	eryday				
			(2) Yes, so	metimes				
			(3) No. I dri	nking unfilte	ered wate	r.		
			(4) No. 1 us	se another a	arsenic-fr	ee water sou	urce, specify:	
Filter Cleaning Frequency			(1) once ev	very week		(4) once eve	ery 2-4 months	
.			(2) once ev	very two we	eks	(5) never	-	
			(3) once a	month				
Date of Last	Cleaning							

Appendix C: Wagtech Arsenator® Digital Arsenic Test Kit Operation Manual

Figure B-19: Arsenic color chart for concentrations above 100µg/L.

Figure B-20: Scanned copy of the Wagtech Arsenator operation manual, part 1

Figure B-21: Scanned copy of the Wagtech Arsenator operation manual, part 2

Figure B-22: Scanned copy of the Wagtech Arsenator operation manual, part 3

Figure B-23: Scanned copy of the Wagtech Arsenator operation manual, part 4

Appendix D: Calibrations and split sample analysis

Figure D-1: Split sample calibration between measured arsenic concentrations in an atomic absorption spectrometer (ENPHO) and the Wagtech Arsenator.

Figure D-2: Calibration of Fe(II) readings from the portable HACH spectrometer vs. prepared Fe(II) standards.

Figure D-3: Split sample calibration with ENPHO spectrophotometer and HACH portable spectrophotometer.

Figure D-4: Split sample calibration between the ENPHO Lab standard titration method and the HACH DO titration test kit.

Appendix E: Figures and tables measured chemical parameters

Included below are the tables and figures data results, most notably for the parameters: phosphorous, silica, pH, DO and electrical conductivity, which were not included in the text.

Table E-3: Averages and standard deviations of measured arsenic concentrations in the groundwater, effluent filtered water and the percent arsenic removal by the filters.

	# GW		As]	Filtered [As]		% [As] removal	
	Samples	Average	σ^{**}	Average	σ^{**}	Average	σ^{**}
Well performing*	58	204	98	17	12	91	10
Poorly performing*	43	270	71	134	80	50	26
Total filter Samples	101	232	93	67	79	73	27

*Based on Nepali drinking water standard of [As]<50 µg/L

**Values above 100 μ g/L of arsenic had an error of +/- 50 μ g/L so standard deviations may be higher

Table E-4: Average and standard deviations of measured ferrous iron concentrations in the groundwater, effluent filtered water and the water after passing through the nails.

	GW [Fe(II)] (mg/L)		Filtered [Fo (mg/L)	e(II)])	Nail [Fe(II)] (mg/L)		
	Average	σ	Average	Average σ		σ	
Well performing*	1.90	0.87	0.13	0.32	0.46	0.59	
Poorly performing*	orming* 0.92 1.		0.44	0.58	0.96	0.88	
Total filters	1.48	1.31	0.31	0.51	0.75	0.81	

*Based on Nepali drinking water standard of [As]<50 µg/L

Figure E-1: Total phosphorus concentrations in groundwater vs. arsenic concentrations in the filtered water. Error: +/-25% (As values $\leq 100 \ \mu g/L$), +/- 50 $\mu g/L$ (As values $\geq 100 \ \mu g/L$), and +/- 10% (P). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$).

Figure E-2: Total silica concentrations in groundwater vs. arsenic concentrations in the filtered water. Error: +/- 25% (As values $\leq 100 \ \mu g/L$), +/-50 $\mu g/L$ (As values $>100 \ \mu g/L$), and +/- 10% in Si. Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$).

	GW	pH	Filtere	Filtered pH		
	Average	σ	Average	σ		
Well performing*	7.3	0.5	7.2	0.5		
Poorly performing*	7.6	0.4	7.5	0.4		
Total filters	7.4	0.4	7.3	0.5		

Table E-5: Average and standard deviations of measured pH units in the groundwater and filtered water.

*Based on Nepali drinking water standard of [As]<50 μ g/L

Figure E-3: pH levels in the groundwater vs. filtered water arsenic concentration. Error: +/- 25% (As \leq 100 µg/L), +/-50 µg/L (As >100 µg/L), and +/-0.5 units (pH). Solid red line: Nepali arsenic drinking water standard (50 µg/L).

Figure E-4: Dissolved oxygen concentration vs. effluent arsenic concentration. Error: +/- 25% (As \leq 100 µg/L), +/-50 µg/L (As >100 µg/L), and +/- 1 mg/L (DO). Solid red line: Nepali arsenic drinking water standard (50 µg/L).

Table E-6: Average and standard deviations of hardness concentrations as CaCO₃ in groundwater and filtered effluent water.

	GW Hardness ((mg/L)	Filtered Hardness (mg/L)			
	Average	σ	Average	σ		
Well performing*	325	73	316	68		
Poorly performing*	278	59	260	51		
Total filters	305	71	292	67		

*Based on Nepali drinking water standard of [As]<50 μ g/L

Figure E-5: New groundwater pH concentrations vs. effluent arsenic concentrations. Error: 25% (As $\leq 100 \ \mu g/L$), +/- 50 $\mu g/L$ (As >100 $\mu g/L$) and +/- 10% (pH). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$). No real correlation can be seen between these two data sets.

Figure E-6: Groundwater electrical conductivity vs. effluent arsenic concentrations. Error: 25% (As $\leq 100 \ \mu g/L$), +/- 50 $\mu g/L$ (As>100 $\mu g/L$), and +/- 10% (conductivity). Solid red line: Nepali arsenic drinking water standard (50 $\mu g/L$).

Figure E-7: Groundwater electrical conductivity vs. groundwater chloride concentration. Error: +/- 10% (chloride) and +/- 10% (conductivity).

Figure E-8: Groundwater hardness concentrations (as CaCO₃) vs. electrical conductivity. Error: +/- 10% (hardness) and +/-10% (conductivity).

Appendix F: Results of other measured parameters:

The correlations of filter flow rate and filter age against effluent filtered water arsenic concentrations are shown in Figure F-1 and Figure F-3. The user survey (**Appendix B**) was recorded to observe if there were any social, geographical or distribution factors also associated with the performance of the KAF. Clusters of well performing or poor performing filters were observed in 8 out of a total of 15 villages tested (**Figure F-4**). There were no observed correlations with the filter performance and the distribution organization of the KAF, the reported number of users and the reported volume of water filtered per day (**Figures F-5**, **Figure F-6** and **Figure F-7**). However, a reported cleaning frequency greater than 3 months did indicate lower filer performance (**Figures F-8**). It is also important to note that 2 of the 3 well performing filters with low reported cleaning frequencies were 3 months old so they may have not needed cleaning yet.

Also, all filters were reported to have well rusted nails by the observation of ENPHO staff. In addition, each filter corresponded to only one household and all but a few households reported to use the filter each day. Those households that did not use the filter each day stated that this was only in the winter season since the raw groundwater was much warmer than the filtered water.

Figure F-24: Filter flow rate vs. filtered water arsenic concentrations. Error: +/- 25% (As \leq 100 µg/L), +/-50 µg/L (As >100 µg/L), and +/- 0.5 L/hour (flow). Solid red line: Nepali arsenic drinking water standard (50 µg/L).

Figure F-25: Histogram of filter age groups (years).

Figure F-26: KAF age vs. arsenic concentrations in the filtered water. Error: +/- 25% (As \leq 100 µg/L), +/-50 µg/L (As >100 µg/L), and +/- 0.5 years (age). Solid red line: Nepali arsenic drinking water standard (50 µg/L). Note: filters of age "0" refer to filters under a year old and installed in 2010.

Figure F-27: Arsenic removing performance of the KAF in each tested village. Performance was measured though the effluent arsenic concentrations compared to the Nepali standard of 50 μ g/L.

Figure F-28: Arsenic removing performance of the KAF by distribution organization. NRCS = National Red Cross Society (Nepal); FFF = Filters for Families (Nepal); RWSSSP = Rural Water Supply and Sanitation Support Programme (Nepal); DWSS = Department of Water Supply and Swearage (Nepal).

Figure F-29: Arsenic removing performance of the KAF by reported number of users per household.

Figure F-30: Arsenic removing performance of the KAF by reported volume of water filtered.

Figure F-31: Arsenic removing performance of the KAF by reported cleaning frequency.

Appendix G: Raw Data Used in Filter Analysis

The following data in pages 35-38 includes the 101 filtered water (FW) samples and 79 groundwater (GW) samples corresponding to the 100 different KAF tested on the field. Filters that were not included in the analysis due to low influent arsenic concentrations, high flow rate, or mechanical malfunctions are not included in this data sheet.

	FW Arsenic	GW Arsenic	Ferrous Iron After Nails	GW Ferrous Iron	FW Ferrous Iron	GW Total Phosporus	GW Silica	FW pH (field)
Filler Number	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	-
4	73	250	0.10	0.75	0.32	0.1	22.9	7.5
5	250	450	0.64	0.73	0.85	0.1	30.6	7.5
6	11	250	0.58	0.80	0.03	0.2	28.2	7.25
7	35	450	0.11	0.54	0.36	0.2	26.3	7.5
8	70	350	0.21	1.01	0.33	0.1	36	7.5
9	98	350	0.80	1.51	0.01	0.3	17.2	7.5
10	400	400	0.64	0.97	1.10	0.8	28.5	7.5
11	150	450	0.15	0.54	0.02	0.2	31.6	8
13	24	250	2.18	1.80	1.21	0.1	32.2	7
14	24	250	1.57	1.80	0.96	0.1	32.2	7
15	4	250	0.51	1.80	1.04	0.1	32.2	7
17	11	250	1.22	1.85	0.42	0.2	25.5	7
18	16	250	1.47	1.85	1.09	0.2	25.5	7.25
19	10	350	2.06	2.12	0.57	0.6	25.5	7.25
21	18	150	1.98	3.16	1.19	0.2	20.6	7
22	33	350	1.18	2.95	1.08	0.1	19	7.25
23	23	350	1.35	2.95	1.21	0.1	19	7
24	9	350	1.08	2.58	0.00	1.0	23.7	7.5
25	13	250	1.61	1.18	1.23	0.3	16	7
26	8	250	1.99	1.92	0.98	0.3	28.5	8
27	26	250	1.53	1.50	1.37	0.1	22.2	7.5
28	0	350	1.19	2.58	1.27	0.1	23.7	7.5
29	12	250	1.83	3.46	1.34	0.3	16.9	7
31	5	150	1.32	1.64	0.01	0.2	17.5	7
32	0	84	1.14	1.89	0.01	0.1	9.1	8
33	0	150	0.53	1.41	0.01	0.1	13.1	7.5
34	8	150	1.16	1.41	0.01	0.1	13.1	7
35	0	76	unknown	0.60	0.01	0	17.2	7.5
36	0	86	2.07	1.79	0.02	0.1	14.7	7.5
37	0	82	1.42	2.71	0.32	0	13.5	7
41	21	250	1.31	0.26	0.02	0.2	19.3	7.5
42	66	250	0.81	0.16	0.02	0.1	32.4	7
43	82	250	0.57	0.16	0.01	0.1	32.4	7.5
44	77	250	0.09	0.16	0.01	0.1	32.4	7.5
45	89	250	0.41	0.16	0.00	0.1	32.4	6.75
46	5	250	1.26	1.69	0.02	0.2	14.8	7
47	41	250	0.22	0.08	0.01	0.1	36.9	7.5
48	14	85	0.34	0.08	0.01	0.1	36.9	7.5
49	21	350	1.17	1.27	0.01	0.2	30.5	7.5
50	96	250	1.38	1.72	0.02	0.2	18.1	7
51	52	250	0.08	1.53	0.01	0.2	23.1	7.5
52	150	250	0.00	1.29	0.00	0.3	17.2	7
53	92	250	1.13	0.16	0.01	0.1	32.1	7.5
54	99	250	0.56	0.96	0.01	0.9	18.7	6.5
55	91	250	0.56	0.96	0.00	0.9	18.7	7.5
56	96	350	0.42	0.76	0.00	0.2	20.9	7.5
58	250	250	0.14	1.05	0.01	0.1	24.2	7.5
60	250	350	0.17	0.67	0.90	0.1	23.3	7
61	29	200	0.09	0.46	0.01	0.1	15.6	6.5
62	18	86	0.06	0.95	0.01	0.1	15.9	6.5

35

	FW Arsenic	GW Arsenic	Ferrous Iron After Nails	GW Ferrous Iron	FW Ferrous Iron	GW Total Phosporus	GW Silica	FW pH (field)
Filter Number	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	-
63	11	86	0.43	1.19	1.01	0.1	12.5	6.5
65	0	78	1.31	1.97	0.00	0.9	18.9	7
66	68	250	2.16	1.97	0.00	0.9	18.9	7
70	62	250	0.25	2.56	0.01	0.9	14.2	7
71	21	250	0.00	0.33	0.01	0.1	13.9	6.25
72	39	68	0.00	0.42	0.01	0.2	16.5	6.5
73	29	99	0.00	0.64	0.00	0.2	25.9	7
74	25	98	0.04	0.07	0.01	0.1	29.2	7
76	250	250	0.00	0.48	0.00	0.2	17.1	7
79	29	150	0.04	0.26	0.01	0.1	17.6	6
80	16	250	0.19	0.20	0.00	0.1	8.5	6.5
81	40	250	0.16	1.46	0.08	0.1	31	6.5
82	29	99	0.41	1.46	0.39	0.1	31	6.5
83	18	150	0.44	0.76	0.01	0.1	16.8	6.5
84	0	60	0.12	1.41	0.01	0.2	27.2	7
85	17	250	0.16	1.34	0.00	0.1	27.1	7
86	150	250	0.38	2.13	0.00	0.2	24.4	7.5
87	150	250	1.35	1.41	0.01	0.2	16.7	7.5
91	16	71	0.07	0.17	0.00	0.2	9.3	7.5
92	24	250	1.13	1.81	0.01	0.1	29.7	7
93	39	250	1.35	1.83	0.01	0.1	26.6	7.5
94	13	250	0.71	1.67	1.41	0.1	25.8	7
95	23	350	0.05	1.37	0.16	0.1	29.6	7.5
96	5	150	0.51	1.08	0.46	0.1	17	7.5
97	6	250	0.77	1.74	0.82	0.1	18.9	7.5
98	72	99	1.12	1.42	1.16	0.1	33.7	7.5
99	98	350	0.94	1.79	0.39	0.1	30.5	7.5
100	18	97	0.69	1.52	0.21	0.2	22.5	7.5
101	0	97	0.78	1.39	1.34	0.2	32.6	7.5
102	0	78	0.24	1.40	0.93	0.7	30.1	8
103	37	150	0.15	1.11	0.86	0.1	24.1	8
105	250	350	1.10	0.80	0.10	0.3	16.2	8
106	150	250	0.15	1.27	0.01	0.1	14.1	8
107	150	250	0.02	0.57	0.01	0.1	9.3	8
108	33	350	0.10	1.03	0.00	0.2	17	8
109	25	250	0.70	4.87	0.08	0.2	17.3	7.5
112	8	250	0.03	1.17	0.05	0.1	21.4	7.5
113	250	350	0.17	0.25	0.01	0.2	20.8	7.5
114	66	250	0.00	0.25	0.01	0.2	20.8	7.5
115	83	250	0.38	0.25	0.00	0.2	20.8	8
116	83	250	0.11	0.25	0.01	0.2	20.8	8
117	90	250	0.40	0.25	0.01	0.2	20.8	8
118	82	250	0.04	0.25	0.00	0.2	20.8	8
119	87	250	0.06	0.25	0.00	0.2	20.8	8
120	80	250	0.00	0.25	0.00	0.2	20.8	8
121	250	250	0.07	0.20	0.00	unknown	27.3	7.5
122	250	250	0.09	0.20	0.01	unknown	27.3	7.5
123	250	250	0.11	0.20	0.01	unknown	27.3	7.5
124	94	200	0.02	0.31	0.00	0.1	10.3	8
125	97	200	0.30	0.31	0.00	0.1	10.3	8
126	79	92	0.16	0.94	0.01	0.1	25.7	7.5

	GW Hardness	FW Hardness	FW Dissolved Oxygen	Flow Rate	GW pH (Lab)	GW Electrical Conductivity	GW Chloride
Filter Number	(mg/L)	(mg/L)	(mg/L)	(L/hour)	-	(µ\$/cm)	(mg/L)
4	314	304	12.3	8.4	7.79	722	unknown
5	290	304	7.2	9.0	7.79	693	3
6	330	360	6.1	15.0	7.98	642	13
7	246	272	1.3	25.8	7.77	680	1
8	222	308	10.6	20.4	8.24	556	1
9	294	244	1.2	32.4	8.43	419	2
10	292	240	2.4	18.0	7.86	646	0
11	242	280	4.0	7.2	8.38	506	7
13	388	372	2.0	13.8	7.96	449	11
14	388	364	0.9	12.6	7.96	449	11
15	388	388	1.2	10.8	7.96	449	11
17	292	396	1.8	10.2	7.36	660	9
18	292	324	2.0	18.0	7.36	660	9
19	400	344	1.5	21.0	7.45	740	15
21	450	396	1.5	20.4	8.15	502	33
22	396	372	1.8	18.6	8.04	475	6
23	396	360	3.0	7.2	8.04	475	6
24	440	328	2.9	15.6	7.33	873	37
25	410	380	2.3	23.4	7.37	757	17
26	440	376	2.1	31.2	7.84	554	12
27	460	496	1.0	25.8	8.07	423	12
28	460	388	1.4	7.2	7.33	873	37
29	410	388	1.2	17.4	7.36	758	20
31	410	372	10.6	29.4	7.89	610	7
32	388	384	3.6	15.6	7.64	703	8
33	404	332	3.1	4.2	7.64	686	6
34	404	392	3.1	11.4	7.64	686	6
35	404	348	2.0	4.8	7.54	770	14
36	400	400	2.8	7.2	7.70	731	9
37	364	356	2.2	19.8	7.43	688	2
41	316	332	11.2	16.8	7.79	661	11
42	270	260	3.3	8.4	7.54	549	6
43	270	272	5.3	25.2	7.54	549	6
44	270	280	5.2	14.4	7.54	549	6
45	270	260	3.1	22.8	7.54	549	6
46	348	332	0.7	13.8	7.63	643	15
47	256	260	3.3	28.8	7.91	513	1
48	256	212	4.0	20.4	7.91	513	1
49	288	240	3.5	10.2	7.43	592	9
50	300	272	3.5	17.4	7.40	616	5
51	316	332	3.6	25.2	7.48	651	12
52	292	244	3.5	13.8	7.75	700	1
53	280	240	3.5	25.2	8.04	622	7
54	312	280	4.5	21.0	7.57	630	1
55	312	272	5.1	20.4	7.57	630	1
56	324	304	4.2	22.8	7.81	613	0
58	360	312	4.2	9.0	7.67	700	3
60	304	272	2.5	16.2	7.85	597	2
61	272	252	2.4	2.4	7.73	491	3
62	200	224	5.3	25.8	9.06	546	7

Prince Import (mp(A) (mp(A) (L) (mp(A) (mp(A) 63 212 204 4.0 27.6 7.81 705 0 66 226 268 5.4 30.0 7.62 6602 1 70 364 3356 2.8 1.08 7.60 490 0 71 216 192 10.7 2.8 7.60 537 1 73 226 224 4.4 13.8 7.64 533 0 74 215 200 2.6 20.4 7.88 4.80 1 76 240 212 4.6 16.8 7.71 522 2 79 244 252 2.1 12.6 7.82 480 1 80 284 228 2.6 2.5.8 8.26 514 25 81 122 296 2.4 25.8 8.26 514 23		GW Hardness	FW Hardness	FW Dissolved Oxygen	Flow Rate	GW pH (Lab)	GW Electrical Conductivity	GW Chloride
63 212 204 4.0 27.6 7.81 705 0 65 296 268 5.4 300 7.62 602 1 70 364 336 2.8 1.0.8 7.33 680 2 71 216 192 10.7 2.8 7.66 490 0 73 226 224 4.2 13.8 7.64 537 1 74 215 200 2.6 20.4 7.88 480 1 76 240 212 4.6 16.8 7.71 522 2 79 244 225 2.1 11.20 7.33 602 1 80 284 226 2.4 12.6 7.83 802 1 81 256 320 2.5 17.4 8.26 514 25 83 276 296 3.1 15.0 7.77 533 17 <	Filter Number	(mg/L)	(mg/L)	(mg/L)	(L/hour)	-	(µS/cm)	(mg/L)
65 266 268 3.4 37.0 7.62 602 1 70 364 335 2.8 10.8 7.33 680 2 71 216 192 10.7 28.8 7.62 602 1 73 236 216 4.5 30.6 7.60 537 1 73 236 224 4.2 13.8 7.64 533 0 74 215 200 2.6 28.4 7.88 480 1 76 240 212 4.6 15.8 7.71 533 602 1 80 284 223 2.1 12.0 7.53 602 1 81 256 320 2.5 17.4 8.26 514 25 82 256 3.1 15.0 7.46 740 2 83 376 226 2.0 1.5 7.77 1333 11 <	63	212	204	4.0	27.6	7.81	705	0
66 277 288 3.4 27.0 7.62 660 1 70 384 336 2.8 10.8 7.63 660 2 71 215 192 10.7 28.8 7.66 490 0 72 236 224 4.5 30.6 7.60 537 1 73 226 224 4.5 13.8 7.64 452 0 76 240 212 4.6 15.8 7.71 522 2 79 244 252 2.1 12.0 7.53 602 1 80 284 228 2.4 12.6 7.82 539 1 81 256 320 2.5 17.4 8.26 514 25 82 256 320 2.5 17.4 8.26 514 25 83 3276 226 2.4 25.8 7.47 733 10	65	296	268	5.4	30.0	7.62	602	1
70 364 336 2.8 10.8 7.36 660 2 71 216 192 10.7 28.8 7.60 537 1 73 236 224 4.2 13.8 7.64 533 0 74 216 200 2.2 13.8 7.64 533 0 76 240 212 4.6 16.8 7.71 552 2 2 79 244 252 2.1 12.0 7.53 5602 1 80 284 228 2.4 12.6 7.82 539 1 81 256 320 2.5 17.4 8.26 514 25 83 276 296 3.1 15.0 7.44 681 10 84 312 296 2.4 25.8 7.7 533 17.7 86 508 280 2.0 15.6 7.27 1323	66	297	268	3.4	27.0	7.62	602	1
71 216 192 10.7 28.8 7.66 490 0 72 236 216 4.5 30.6 7.60 537 1 73 236 224 4.2 13.8 7.64 523 0 74 216 200 2.6 20.4 7.68 440 1 76 240 212 4.6 15.8 7.71 522 2 79 244 252 2.1 12.0 7.53 602 1 80 284 228 2.4 12.6 7.82 539 1 81 256 320 2.5 17.4 8.26 514 25 83 276 296 3.1 15.0 7.43 681 10 85 348 300 2.3 15.6 7.27 1323 61 86 568 280 2.0 15.8 7.48 946 91	70	364	336	2.8	10.8	7.33	680	2
72 226 216 4.5 30.6 7.60 537 1 73 235 224 4.2 13.8 7.64 523 0 74 216 200 2.6 20.4 7.68 440 1 76 240 212 4.6 16.8 7.71 522 2 79 244 252 2.1 12.0 7.82 539 1 80 284 228 2.4 12.6 7.82 539 1 81 256 332 2.6 2.5 17.4 8.26 514 25 83 276 266 3.1 15.0 7.46 740 2 84 312 296 2.4 25.8 8.8 661 10 85 348 300 3.3 23.4 7.77 53.3 17 86 508 220 5.6 7.2 8.26 43.4	71	216	192	10.7	28.8	7.66	490	0
73 236 224 4.2 13.8 $7,64$ 523 0 74 216 200 2.6 20.4 7.68 480 1 76 240 212 4.6 16.8 7.71 522 2 79 244 252 2.1 12.0 7.53 602 1 80 226 32.8 2.4 22.8 539 1 81 256 320 2.5 17.4 8.26 514 25 82 256 2.2 15.6 7.27 1323 61 84 312 256 2.4 25.8 7.48 946 91 91 264 22.0 15.6 7.27 1323 61 87 452 420 2.5 16.8 7.00 14 92 340 312 3.5	72	236	216	4.5	30.6	7.60	537	1
74 216 200 2.6 20.4 7.68 480 1 76 240 212 4.6 16.8 7.71 522 2 80 284 228 2.4 12.6 7.82 539 1 81 256 320 2.5 17.4 8.26 514 25 82 256 320 2.5 17.4 8.26 514 25 84 312 296 3.1 15.0 7.46 740 2 84 312 296 3.1 15.6 7.27 1323 61 85 348 300 3.3 23.4 7.77 533 11 92 340 312 3.5 7.2 8.26 436 23 91 264 220 5.8 28.2 8.39 45 1 <t< td=""><td>73</td><td>236</td><td>224</td><td>4.2</td><td>13.8</td><td>7.64</td><td>523</td><td>0</td></t<>	73	236	224	4.2	13.8	7.64	523	0
76 240 212 4.6 16.8 7.71 S22 2 79 244 252 2.1 12.0 7.53 662 1 80 284 228 2.4 12.6 7.82 S39 1 81 256 332 2.6 25.8 8.26 514 25 83 276 296 3.1 15.0 7.46 740 2 84 312 226 2.4 25.8 7.43 661 10 85 508 280 2.0 15.6 7.27 1323 61 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14	74	216	200	2.6	20.4	7.68	480	1
79 244 252 2.1 12.0 7.53 602 1 80 284 228 2.4 12.6 7.82 539 1 81 255 332 2.6 25.8 8.26 514 25 82 256 320 2.5 17.4 8.26 514 25 84 312 296 2.4 25.8 7.43 661 10 85 344 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.77 1323 61 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 <td>76</td> <td>240</td> <td>212</td> <td>4.6</td> <td>16.8</td> <td>7.71</td> <td>522</td> <td>2</td>	76	240	212	4.6	16.8	7.71	522	2
80 224 228 2.4 12.6 7.82 539 1 81 256 332 2.6 25.8 8.26 514 25 83 276 296 3.1 15.0 7.46 740 2 84 312 296 2.4 25.8 743 681 10 85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10	79	244	252	2.1	12.0	7.53	602	1
81 256 332 2.6 25.8 8.26 514 25 82 256 320 2.5 17.4 8.26 514 25 83 276 296 3.1 15.0 7.46 740 2 84 312 296 2.4 25.8 7.43 681 10 85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 713 1 95 292 348 2.0 4.8 7.32 714 0	80	284	228	2.4	12.6	7.82	539	1
82 256 320 2.5 17.4 8.26 514 25 83 276 296 3.1 15.0 7.46 740 2 84 312 296 2.4 25.8 7.43 661 10 85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 322 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.24 750 10 95 292 348 2.4 7.2 7.24 750 10 97 296 380 2.0 16.2 7.24 713 1	81	256	332	2.6	25.8	8.26	514	25
83 276 296 3.1 15.0 7.46 740 2 84 312 296 2.4 25.8 7.43 681 10 85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 87 452 420 2.5 16.8 7.48 946 91 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 713 1 96 280 320 1.6 7.24 713 1 1 97 296 380 2.0 1.62 7.24 713 1 <	82	256	320	2.5	17.4	8.26	514	25
84 312 296 2.4 25.8 7.43 681 10 85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 87 452 420 2.5 16.8 7.48 946 91 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 658 1 101 36 300 1.3 27.6 7.14 746 1	83	276	296	3.1	15.0	7.46	740	2
85 348 300 3.3 23.4 7.77 533 17 86 508 280 2.0 15.6 7.27 1323 61 87 452 420 2.5 16.8 7.48 946 91 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 713 1 96 280 300 1.3 27.6 7.22 658 1 99 300 340 1.9 22.8 7.16 736 1 100 304 320 3.4 11.4 7.27 701 3	84	312	296	2.4	25.8	7.43	681	10
86 508 280 2.0 15.6 7.27 1323 61 87 452 420 2.5 16.8 7.48 946 91 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.14 746 1 100 304 320 3.4 11.4 7.27 701 3	85	348	300	3.3	23.4	7.77	533	17
87 452 420 2.5 16.8 7.48 946 91 91 264 220 5.8 28.2 8.39 45 1 92 340 312 3.5 7.2 8.32 456 123 93 368 332 3.0 18.6 8.10 6011 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.2 7.35 668 1 105 224 240 3.0 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 114 232 160 5.9 25.8 7.65 829 <td< td=""><td>86</td><td>508</td><td>280</td><td>2.0</td><td>15.6</td><td>7.27</td><td>1323</td><td>61</td></td<>	86	508	280	2.0	15.6	7.27	1323	61
91264220 5.8 28.2 8.39 45 192340312 3.5 7.2 8.26 436 23 93368332 3.0 18.6 8.10 601 42 94300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 99 300 340 1.9 22.8 7.16 736 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 22.2 7.35 6668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 14.4 8.53 552 3 113 232 140 5.4 27.6 7.61 716 4 106 230 <	87	452	420	2.5	16.8	7.48	946	91
92 340 312 3.5 7.2 8.26 436 23 93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.2 7.35 6668 1	91	264	220	5.8	28.2	8.39	45	1
93 368 332 3.0 18.6 8.10 601 42 94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.3 7.68 808 71 105 224 240 3.0 27.6 7.61 716 4	92	340	312	3.5	7.2	8.26	436	23
94 300 304 1.7 25.8 7.27 720 14 95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.35 668 1 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4	93	368	332	3.0	18.6	8.10	601	42
95 292 348 2.4 7.2 7.24 750 10 96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.24 713 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.2 7.35 668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 14.4 8.53 552 3	94	300	304	1.7	25.8	7.27	720	14
96 280 324 2.0 4.8 7.32 714 0 97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 658 1 99 300 340 1.9 22.8 7.16 736 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 160 5.9 25.8 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 114 232 168 6.6 7.65 829 2 <td>95</td> <td>292</td> <td>348</td> <td>2.4</td> <td>7.2</td> <td>7.24</td> <td>750</td> <td>10</td>	95	292	348	2.4	7.2	7.24	750	10
97 296 380 2.0 16.2 7.24 713 1 98 280 300 1.3 27.6 7.22 6558 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 22.2 7.35 6668 1 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.0 27.6 7.61 716 4 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 </td <td>96</td> <td>280</td> <td>324</td> <td>2.0</td> <td>4.8</td> <td>7.32</td> <td>714</td> <td>0</td>	96	280	324	2.0	4.8	7.32	714	0
98 280 300 1.3 27.6 7.22 658 1 99 300 340 1.9 22.8 7.16 736 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.2 7.35 668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2	97	296	380	2.0	16.2	7.24	713	1
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 340 1.9 22.8 7.16 736 1 100 304 320 3.4 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 22.2 7.35 6668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 718 4 107 216 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 <t< td=""><td>98</td><td>280</td><td>300</td><td>1.3</td><td>27.6</td><td>7.22</td><td>658</td><td>1</td></t<>	98	280	300	1.3	27.6	7.22	658	1
10 10 11 11.4 7.27 701 3 101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 2.2 7.35 6668 1 105 224 240 3.0 27.6 7.61 716 4 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2	99	300	340	1.9	22.8	7.16	736	1
101 316 352 2.1 27.6 7.14 746 1 102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 22.2 7.35 668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 160 5.9 25.8 7.65 829 2 114 232 208 4.8 24.6 7.65 829 2 </td <td>100</td> <td>304</td> <td>320</td> <td>3.4</td> <td>11.4</td> <td>7.27</td> <td>701</td> <td>3</td>	100	304	320	3.4	11.4	7.27	701	3
102 356 404 2.4 22.8 7.68 808 71 103 252 252 2.2 22.2 7.35 668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 160 5.9 25.8 7.65 829 2 114 232 208 4.8 24.6 7.65 829 2 115 232 236 1.7 14.4 7.65 829 2 </td <td>101</td> <td>316</td> <td>352</td> <td>2.1</td> <td>27.6</td> <td>7.14</td> <td>746</td> <td>1</td>	101	316	352	2.1	27.6	7.14	746	1
103 252 252 2.2 2.2 7.35 668 1 105 224 240 3.0 27.6 7.62 708 6 106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 160 5.9 25.8 7.65 829 2 114 232 208 4.8 24.6 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 <td>102</td> <td>356</td> <td>404</td> <td>2.4</td> <td>22.8</td> <td>7.68</td> <td>808</td> <td>71</td>	102	356	404	2.4	22.8	7.68	808	71
100 100 <td>103</td> <td>252</td> <td>252</td> <td>2.2</td> <td>22.2</td> <td>7.35</td> <td>668</td> <td>1</td>	103	252	252	2.2	22.2	7.35	668	1
106 256 248 3.1 27.6 7.61 716 4 107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 168 6.3 6.6 7.65 829 2 <td>105</td> <td>224</td> <td>240</td> <td>3.0</td> <td>27.6</td> <td>7.62</td> <td>708</td> <td>6</td>	105	224	240	3.0	27.6	7.62	708	6
107 216 240 3.4 27.0 7.56 718 4 108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 <td>106</td> <td>256</td> <td>248</td> <td>3.1</td> <td>27.6</td> <td>7.61</td> <td>716</td> <td>4</td>	106	256	248	3.1	27.6	7.61	716	4
108 240 200 6.3 25.2 8.02 751 6 109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2	107	216	240	3.4	27.0	7.56	718	4
109 248 240 3.4 14.4 8.53 552 3 112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown	108	240	200	6.3	25.2	8.02	751	6
112 296 280 1.7 28.8 7.61 703 4 113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 256 5.1 24.6 unknown unk	109	248	240	3.4	14.4	8.53	552	3
113 232 140 5.4 26.4 7.65 829 2 114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown <td>112</td> <td>296</td> <td>280</td> <td>1.7</td> <td>28.8</td> <td>7.61</td> <td>703</td> <td>4</td>	112	296	280	1.7	28.8	7.61	703	4
114 232 160 5.9 25.8 7.65 829 2 115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 <t< td=""><td>113</td><td>232</td><td>140</td><td>5.4</td><td>26.4</td><td>7.65</td><td>829</td><td>2</td></t<>	113	232	140	5.4	26.4	7.65	829	2
115 232 208 4.8 24.6 7.65 829 2 116 232 236 1.7 14.4 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 <t< td=""><td>114</td><td>232</td><td>160</td><td>5.9</td><td>25.8</td><td>7.65</td><td>829</td><td>2</td></t<>	114	232	160	5.9	25.8	7.65	829	2
110 111 1111 1111 1111 111<	115	232	208	4.8	24.6	7.65	829	2
117 232 240 2.1 15.6 7.65 829 2 118 232 188 4.2 13.8 7.65 829 2 119 232 168 6.3 6.6 7.65 829 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1	116	232	236	1.7	14.4	7.65	829	2
111 125 5.1 24.6 124.6 128 129 2 121 121 unknown 256 5.1 24.6 unknown 124 236 240 3.9 16.2 8.11	117	232	230	2.1	15.6	7.65	829	2
110 120 120 120 120 120 120 120 120 120 121 168 6.3 6.6 7.65 829 2 2 120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1 126 248 260 6.2 14.4 8.55 455 2	118	232	188	4.2	13.8	7.65	829	2
120 232 200 3.2 6.6 7.65 829 2 121 unknown 256 5.1 24.6 unknown unknown unknown 122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1 126 248 260 6.2 14.4 8.55 455 2	119	232	168	6.3	6.6	7.65	829	2
120 121 122 125 125 126 121 122 121 125 125 126 127 128 129 129 129 126 126 124 125 126 126 124 126 126 126 126 126 126 126 126 126 126 126 126 126 126 <td>120</td> <td>232</td> <td>200</td> <td>3.2</td> <td>6.6</td> <td>7.65</td> <td>829</td> <td>2</td>	120	232	200	3.2	6.6	7.65	829	2
122 unknown 226 5.4 21.6 unknown unknown unknown 123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1 126 248 260 6.2 14.4 2.55 455 2	120	unknown	256	51	24.6	unknown	unknown	unknown
123 unknown 260 2.8 28.8 unknown unknown unknown 124 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1 126 248 260 5.2 14.4 8.55 455 2	122	unknown	235	5.4	21.6	unknown	unknown	unknown
125 236 240 3.9 16.2 8.11 596 1 125 236 248 4.2 18.0 8.11 596 1 126 248 4.2 18.0 8.11 596 1	122	unknown	260	2.4	21.0	unknown	unknown	unknown
12.5 2.60 2.40 3.5 10.2 0.11 350 1 125 236 248 4.2 18.0 8.11 596 1 126 248 250 6.2 14.4 8.56 456 2	123	226	240	2.0	16.2	2 11	596	1
125 240 4.2 10.0 0.11 550 1 126 248 260 6.2 14.4 0.55 455 2	125	235	240	4.2	18.0	8 11	596	1
	125	230	240	62	14.4	8 56	456	2

Appendix G: User Survey Raw Data

The following data in pages 40-47 includes the survey data for the 100 households corresponding to the 100 different filters. Sample number 53 corresponding to the same filter as sample number 43 was not included. Also, filters that were not included in the analysis due to low influent arsenic concentrations, high flow rate, or mechanical malfunctions are not included in this data sheet.

Filter Number	Age (Years)	Date	District	VDC	Ward No.	Tole	Type of KAF	Name of the Household owner
4	7	Jan. 9, 2011	Nawalparasi	Tilakpur	7	Patkhauli	Gem 505	Thagey Prasad Chaudhary
5	6	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Kamalesh Chaudhary
6	6	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Narsingh Kurmi
7	6	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Nagendra Kurmi
8	5	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Hem Narayan Chaudhary
9	4	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Bharat Thatel
10	5	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Santosh Jaiswal
11	4	Jan. 10, 2011	Nawalparasi	Devgaun	1	Patkhouli	Gem 505	Amar singh kurmi
13	3	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Tika Prasad Chaudhary
14	3	Jan.11, 2011	Nawalparasi	Pratappur	1	, Khaireni/Tharu	Gem 505	, Chatraman Chaudhary
15	3	Jan.11, 2011	Nawalparasi	Pratappur	1	, Khaireni/Tharu	Gem 505	Birendra Chaudhary
17	3	Jan.11, 2011	Nawalparasi	Pratappur	1	, Khaireni/Tharu	Gem 505	Bahadur Tharu
18	3	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Chet Naravan Tharu
19	3	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Govinda Chaudhary
21	3	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Ramhari Bidari
22	3	Jan. 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Bal Bahadur Chaudhary
23	3	Jan. 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Om Naravan Chaudhary
24	3	Jan. 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Bishu Prasad Upadhava
25	3	lan, 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Madan Chaudhary
26	3	lan, 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Madari Prasad Chaudhary
27	3	lan, 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Tularam Chaudhary
28	3	lan, 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Ashok Kashodhan
29	3	Jan. 12, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Tek Narayan Chaudhary
31	6	ian, 13,2011	Nawalparasi	Sunwal	3	Naduwa	Concrete square	Sanju Thana
32	6	jan. 13,2011	Nawalparasi	Sunwal	3	Naduwa	Concrete round	lav Budhathoki
33	3	jan. 13,2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Khim Rai Rana
34	3	jan. 13.2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Khalzir Budhathoki
35	6	jan. 13.2011	Nawalparasi	Sunwal	3	Naduwa	Concrete square	Baliram Thapa
36	6	ian. 13.2011	Nawalparasi	Sunwal	3	Naduwa	Concrete round	Ganesh Budhathoki
37	3	jan. 13.2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Laxmi Bhusal
41	0	Jan. 14, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Lila Chaudhary
42	0	Jan. 14, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Birendra Chaudhary
43	0	Jan. 14, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Fanendra Chaudhary
44	0	Jan. 14, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Top Naravan Chaudhary
45	0	Jan. 15. 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Shivanath Chaudhary
46	0	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Mohalla Chaudhary
47	0	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Dhirendra Chaudhary
48	0	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Ramesh Chaudhary
49	0	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Naresh Chaudhary
50	4	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Ayodhya Chaudhary
51	3	Jan. 15. 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Chedi Chaudhary
52	4	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Man Bahadur Chaudhary
53	7	Jan. 15, 2011	Nawalparasi	Bhutaha	9	Panchanagar	Gem 505	Farendra Chaudhary
54	7	Jan. 16, 2011	Nawalparasi	Bhutaha	6	Panchanagar	Gem 505	Yam Bahadur Chaudhary
55	7	Jan. 16, 2011	Nawalparasi	Bhutaha	6	Panchanagar	Gem 505	Rita Chaudhary
56	5	Jan. 16, 2011	Nawalparasi	Bhutaha	6	Panchanagar	Gem 505	Tara Prasad Chaudhary
58	6	Jan. 16, 2011	Nawalparasi	Bhutaha	6	Panchanagar	Concrete square	Sushila Faudhar
60	7	Jan. 16, 2011	Nawalparasi	Sarawal	1	Goini	Concrete square	Hari Narayan Chaudhary
61	0	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Uday raj Tharu
62	0	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Bhud narayan Tharu

Filter Number	Age (Years)	Date	District	VDC	Ward No.	Tole	Type of KAF	Name of the Household owner
63	0	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Khel ram kanta Chaudhary
65	0	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Dhani ram Chaudhary
66	0	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Ram chandra Chaudhary
70	3	Jan. 18, 2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Chitra Bahadur Faudar
71	0	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Tikaram Bashyal
72	0	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Humanath Bashyal
73	3	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Balaram Pandey
74	0	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Mira lal Bashyal
76	0	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Yadav Aryal
79	7	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	12	Kasiya	Gem 505	Madhav lal Shrestha
80	7	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	12	Kasiya	Gem 505	Fagu Yadav
81	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Rishi raj Chaudhary
82	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Gobinda Chaudhary
83	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Om Prakash Chaudhary
84	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Kailash Chaudhary
85	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Padam Narayan Chaudhary
86	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Ganesh Kewat
87	5	Jan. 19, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Ramzya Kewat
91	7	Jan. 20, 2011	Rupandehi	Dudharakshya	3	Budhanagar	Concrete square	Kul Bahadur Tandon
92	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Kailash Sahani
93	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Unwanch	Gem 505	Ramdas Gupta
94	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Ramchandra Bhar
95	7	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Rabindra Pd. Bhar
96	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Madan Kurmi
97	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Sanu Pd. Bhar
98	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Kedarnath Gupta
99	5	Jan. 21, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Tribhuvan Gupta
100	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Ram Harijan
101	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Ram Kewal Harijan
102	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	8	Baikunthapur	Gem 505	Jayram Gupta
103	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Kanchanha	Gem 505	Mustakim Ansari
105	6	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Shiwangadh	Gem 505	Shivalal Aryal
106	6	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Shiwangadh	Gem 505	Sabitri Arval
107	4	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Shiwangadh	Gem 505	Parag Gupta
108	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Babu lal Harijan
109	5	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Ram abadh Gupta
112	5	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Radhika Chaudhary
113	5	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Mohan Chaudhary
114	5	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Some Tharu
115	5	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Ash Naravan Chaudhary
116	5	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Praladh Badhai
117	5	, Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Algu Badhai
118	5	Jan. 23. 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Ganesh Bahadur Chaudhary
119	5	Jan. 23. 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Laxman Sharma
120	5	Jan. 23. 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Goli Gupta
121	5	Jan.24, 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Gobardhan Chaudhary
122	5	Jan.24, 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Man Bahdaur Chaudharv
123	5	Jan.24, 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Ani Rudra Tharu
124	5	Jan.24. 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Mahabir Bi, Ka.
125	5	Jan.24. 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Shree ram Bi. Ka.
126	5	Jan.24, 2011	Nawalparasi	Sukrauli	9	Naduwa	Gem 505	Shiva Kumar Sahani

Filter Number	KAF provided by	KAF Installed Date	Quality of Iron nails	No. of KAF Households	Number of KAF Users
4	NRCS	2003	Well rusted	1	7
5	NRCS	2004	Well rusted	1	9
6	NRCS	2004	Well rusted	1	3
7	Filters for families	2004	Well rusted	1	2
8	Filters for families	2005	Well rusted	1	5
9	Filters for families	2006	Well rusted	1	5
10	Filters for families	2005	Well rusted	1	4
11	Filters for families	2006	Well rusted	1	5
13	Filters for families	2007	Well rusted	1	2
14	Filters for families	2007	Well rusted	1	4
15	Filters for families	2007	Well rusted	1	3
17	Filters for families	2007	Well rusted	1	7
18	Filters for families	2007	Well rusted	1	2
19	Filters for families	2007	Well rusted	1	4
21	Filters for families	2007	Well rusted	1	5
22	Filters for families	2007	Well rusted	1	5
23	Filters for families	2007	Well rusted	1	4
24	Filters for families	2007	Well rusted	1	5
25	Filters for families	2007	Well rusted	1	7
26	Filters for families	2007	Well rusted	1	10
27	Filters for families	2007	Well rusted	1	7
28	Filters for families	2007	Well rusted	1	4
29	Filters for families	2007	Well rusted	1	4
31	RWSSSP	2004	Well rusted	1	4
32	RWSSSP	2004	Well rusted	1	7
33	Filters for families	2007	Well rusted	1	2
34	Filters for families	2007	Well rusted	1	3
35	RWSSSP	2004	Well rusted	1	3
36	RWSSSP	2004	Well rusted	1	7
37	Filters for families	2007	Well rusted	1	3
41	DWSS	2010	Well rusted	1	4
42	DWSS	2010	Well rusted	1	5
43	DWSS	2010	Well rusted	1	4
44	DWSS	2010	Well rusted	1	7
45	DWSS	2010	Well rusted	1	4
46	DWSS	2010	Well rusted	1	4
47	DWSS	2010	Well rusted	1	4
48	DWSS	2010	Well rusted	1	10
49	DWSS	2010	Well rusted	1	8
50	NRCS	2006	Well rusted	1	7
51	NRCS	2007	Well rusted	1	2
52	NRCS	2006	Well rusted	1	7
53	NRCS	2003	Well rusted		
54	NRCS	2003	Well rusted	1	6
55	NRCS	2003	Well rusted	1	4
56	NRCS	2005	Well rusted	1	4
58	Local entrepreneur (Raju Bishwo)	2004	Well rusted	1	5
60	RWSSSP	2003	Well rusted	1	27
61	DWSS	2010	Well rusted	1	7
62	DWSS	2010	Well rusted	1	6

Filter Number	KAF provided by	KAF Installed Date	Quality of Iron nails	No. of KAF Households	Number of KAF Users
63	DWSS	2010	Well rusted	1	4
65	DWSS	2010	Well rusted	1	2
66	DWSS	2010	Well rusted	1	9
70	Filters for families	2007	Well rusted	1	4
71	DWSS	2010	Well rusted	1	5
72	DWSS	2010	Well rusted	1	8
73	NRCS	2007	Well rusted	1	5
74	DWSS	2010	Well rusted	1	6
76	DWSS	2010	Well rusted	1	4
79	NRCS	2003	Well rusted	1	6
80	NRCS	2003	Well rusted	1	8
81	Filters for families	2005	Well rusted	1	11
82	Filters for families	2005	Well rusted	1	11
83	Filters for families	2005	Well rusted	1	5
84	Filters for families	2005	Well rusted	1	9
85	Filters for families	2005	Well rusted	1	6
86	Filters for families	2005	Well rusted	1	4
87	Filters for families	2005	Well rusted	1	5
91	Local Entrepreneur (Narayan Pandey)	2003	Well rusted	1	8
92	Filters for families	2005	Well rusted	1	5
93	Filters for families	2005	Well rusted	1	11
94	Filters for families	2005	Well rusted	1	6
95	NRCS	2003	Well rusted	1	6
96	Filters for families	2005	Well rusted	1	8
97	Filters for families	2005	Well rusted	1	5
98	Filters for families	2005	Well rusted	1	4
99	Filters for families	2005	Well rusted	1	6
100	Filters for families	2005	Well rusted	1	9
101	Filters for families	2005	Well rusted	1	4
102	Filters for families	2005	Well rusted	1	5
103	Filters for families	2005	Well rusted	1	8
105	Filters for families	2004	Well rusted	1	8
106	Filters for families	2004	Well rusted	1	3
107	Filters for families	2006	Well rusted	1	12
108	Filters for families	2005	Well rusted	1	5
109	Filters for families	2005	Well rusted	1	10
112	Filters for families	2005	Well rusted	1	4
113	Filters for families	2005	Well rusted	1	6
114	Filters for families	2005	Well rusted	1	3
115	Filters for families	2005	Well rusted	1	6
116	Filters for families	2005	Well rusted	1	5
117	Filters for families	2005	Well rusted	1	6
118	Filters for families	2005	Well rusted	1	8
119	Filters for families	2005	Well rusted	1	4
120	Filters for families	2005	Well rusted	1	6
121	Filters for families	2005	Well rusted	1	5
122	Filters for families	2005	Well rusted	1	2
123	Filters for families	2005	Well rusted	1	8
124	Filters for families	2005	Well rusted	1	7
125	Filters for families	2005	Well rusted	1	4
126	Filters for families	2005	Well rusted	1	4

Filter Number	Filter Water Per Day (L)	Filte use	Filter cleaning Frequency	Date of last cleaning
4	45	everyday	When water is insuffient/once in every 2-3 months	20 days back
5	30	everyday	once in every two weeks	5 days back
6	20	everyday	once in a month	a month back
7	25	everyday	once in every two weeks	two week back
8	30	everyday	when water is insufficient/once in every 2-3 months	two months back
9	40	everyday	once in every two weeks	3 days back
10	30	everyday	once in a month	20 days back
11	30	everyday	once in a month	a month back
13	25	everyday	once in month	25 days back
14	over 50 litre	everyday	once in a month	a month back
15	30	everyday	once in a month	a month back
17	40	everyday	once in a month	23 days back
18	10	everyday	once in a month	more than a month
19	30	everyday	once in a two weeks	10 days back
21	over 50 litre	everyday	once in every 2-3 months	two months back
22	30	everyday	once in a month	a month back
23	30	everyday	once in every three month	two months back
24	50	everyday	once in two week	two weeks back
25	over 50 litre	everyday	once in a month	two weeks back
26	over 50 litre	everyday	once in a month	yesterday
27	40	everyday	once in a month	yesterday
28	50	everyday	once in a week	a week back
29	20	everyday	once in a month	yesterday
31	20	everyday	When water is insufficient/ 1-3 month	a month back
32	30	everyday	once in a month	15 days back
33	20	everyday	When water is insufficient/once in every 2-3 months	three months back
34	20	everyday	once in every two month	a month back
35	20	everyday	when water is insufficient/once in every 2-3 months	two months back
36	40	everyday	once in two month	No idea
37	20	everyday	when water is insufficent	two months back
41	20	everyday	once in every 2-3 months	25 days back
42	25	everyday	once in every 2-3 months	3 months back
43	35	everyday	once in every two weeks	10 days back
44	30	everyday	once in every 2-3 months	2 months back
45	25	everyday	once a month	a month back
46	30	everyday	once in every 2-3 months	45 days back
47	10	everyday	once in every 2-3 months	3 months back
48	over 50 litre		No idea	No idea
49	50	everyday	once in every 2-3 months	3 months back
50	35	everyday	Never	Never
51	25	everyday	once in every two weeks	12 days back
52	50	everyday	once in every 2-3 months	1 day back
53				
54	40	everyday	once in every 6 months	6 months back
55	35	everyday	once in every 2-3 months	two months back
56	40	everyday	once in every two weeks	7 days back
58	25	everyday	once in every 2-3 months	two months back
60	over 50 litre	everyday	once in a month	15 days back
61	20	everyday	once in every 2-3 months	two months back
62	30	everyday	once in every 2-3 months	two months back

Filter Number	Filter Water Per Day (L)	Filte use	Filter cleaning Frequency	Date of last cleaning
63	40	everyday	once in every 2-3 months	3 months back
65	12	everyday	Never	Never
66	over 50 litre	everyday	once in a month	a month back
70	25	everyday	once in every 4 month	two months back
71	35	everyday	Never	Never
72	over 50 litre	everyday	once in every 2-3 months	20 days back
73	40	everyday	once in every 2-3 months	a month back
74	40	everyday	once in every 2-3 months	a month back
76	40	everyday	once in every 2-3 months	15 days back
79	50	everyday	once in a month	12 days back
80	40	everyday	once in a month	a month back
81	over 50 litre	everyday	once in every 2-3 months	20 days back
82	over 50 litre	everyday	once in every 2-3 months	a month back
83	40	everyday	once in every 2-3 months	40 days back
84	over 50 litre	everyday	once in every 2-3 months	20 days back
85	40	everyday	once in every 2-3 months	2 months back
86	30	everyday	once in every two weeks	15 days back
87	40	everyday	once in a month	15 days back
91	over 50 litre	everyday	once in a month	15 days back
92	40	everyday	once in every 2-3 months	a month back
93	over 50 litre	everyday	once in a month	5 days back
94	50	everyday	once in a month	10 days back
95	40	everyday	once in a month	25 days back
96	50	everyday	once in every 2-3 months	a month back
97	30	everyday	once in a month	10 days back
98	30	everyday	once in a month	10 days back
99	50	everyday	once in a month	20 days back
100	40	everyday	once in every two weeks	8 days back
101	40	everyday	once in every two weeks	7 days back
102	35	everyday	once in every 2-3 months	45 days back
103	40	everyday	once in a month	one month ago
105	40	everyday	once in every two weeks	a months back
106	30	everyday	once in a month	15 days back
107	over 50 litre	everyday	once in every two weeks	12 days back
108	35	everyday	once in a month	a month back
109	30	don't uses during cold season	once in every two weeks	2 months back
112	20	everyday	once in every 2-3 months	a month back
113	32	everyday	once in every 7-8 months	5 months back
114	20	everyday	once in every 2-3 months	45 days back
115	over 50 litre	don't uses during cold season	once in every 2-3 months	2 months back
116	40	everyday	once in every 2-3 months	45 days back
117	50	everyday	once in every 4 month	4 months back
118	over 50 litre	don't uses during cold season	once in every 4 month	3 months back
119	40	don't uses during cold season	once in every 4 month	4 months back
120	30	everyday	once in every 4 month	4 months back
121	40	everyday	once in every 2-3 months	a month back
122	30	everyday	once in a month	a month back
123	40	everyday	once in every 2-3 months	a month back
124	over 50 litre	everyday	once in every 4 month	4 months back
125	40	everyday	once in every 4 month	a day back
126	36	everyday	once in a month	a month back

Filter Number	Remarks
4	
5	Some floating materials above sand layer
6	
7	
8	
9	
10	
11	Filter was not in use from 10 days becoz filter water is cold.
13	
14	
15	
17	
18	Filter was not in use from past 15 days due to cold water from KAF
19	
21	
22	
23	
24	
25	Low sand level (~1 inch less)
26	· · · ·
27	Low sand level (~1 inch less)
28	Using tubewell of filter no. 24
29	
31	
32	
33	Low sand level (~1 inch less)
34	· · · ·
35	
36	
37	
41	Low sand level (~1/2 inch less)
42	Arsenicosis symptom seen in HH member
43	Low sand level (~1/2 inch less)
44	Low sand level (~1/2 inch less)
45	Low sand level (~1/2 inch less)
46	Low sand level (~1/2 inch less)
47	Low sand level (~1/2 inch less)
48	Not in use since a month
49	
50	
51	
52	
53	Retest of filter no. 43
54	
55	
56	
58	
60	Nails more than 5 kg
61	Large nail size
62	Ť

Filter Number	Remarks
63	Large nail size
65	Large nail size
66	
70	
71	
72	
73	absence of resting water level
74	
76	
79	
80	
81	
82	
83	
84	
85	
86	
87	
91	
92	
93	
94	
95	
96	Fine sand mixed with coarse sand
97	Filter was not in use from past 15 days due to cold water from KAF
98	· · ·
99	
100	
101	
102	
103	
105	
106	
107	
108	
109	Filter was not in use from past 2 months due to cold water from KAF
112	
113	
114	filter was not in use from past 1 months due to cold water from KAF
115	
116	
117	
118	Filter was not in use from past 2 months due to cold water from KAF
119	
120	Filter was not in use from past 4 months due to cold water from KAF
121	
122	
123	
124	
125	
126	

Filter #	H20 sourse	As (ppb)	Fe(II) (ppm)	Sil (ppm)	pH (1)	pH (2)	Hard (2) ppm	Alk (ppm)	CI (ppm)	Flow (L/min)	Notes (1):
1	GW	47	2.33	13.2	8	7.8	425	240+	0	0.91	too low GW [As], <50ppb
2	GW	39	2.98	17.7	8	7.2	425	240+	0		too low GW [As], <50ppb
	GW	92	0.47	14.7	8	7.8	250	180	0		Filter type 4 discarted
3	filter	8	0	11.9	7.5	7.2-7.8	120	120	0		
	after nails		0.84								
16	GW	200-300	3.75 OR	30.9	7.5	7.2	250-425	180	0	>0.5	flow too fast
20	GW	100			7	7.2	425	180	0	>0.5	flow too fast
30	GW	<10	2.04	9.5	7	7.2	425	240	0		too low GW [As], <50ppb
38	GW	0 UR	1.28	16	7	6.8	425	290	0	0.14	too low GW [As], <50ppb
39	GW	0 UR	1.78	13.5	7.5	6.8	425	280	0	0.30	too low GW [As], <50ppb
40	GW	13	4.24	18.5	7	6.8	425	280	0		too low GW [As], <50ppb
57	GW	200-300	1.2	14.4	7.5	7.2-7.8	425	280	0	0.08	flow too fast
59	GW	41	1.28	12.3	7.5	7.2-7.8	425	280	0	0.30	too low GW [As], <50ppb
64	GW	56	2.92	14.1	6.5	6.8	425	240	0	0.48	too low GW [As], <50ppb
67	GW	39	3.66	22.5	7	7.2	425	240	0	0.48	too low GW [As], <50ppb
68	GW	48	4.04	15.1	7	7.2	425	240	0	0.30	too low GW [As], <50ppb
69	GW	42	5.32	17.4						0.38	too low GW [As], <50ppb
75	GW	12			6.5	7.2	425	240	0	0.31	too low GW [As], <50ppb
77	GW	2	4.5 OR	12.3	6.5	6.8	425	240	0	0.28	too low GW [As], <50ppb
78	GW	37		14.6	7	7.2	250	240	0		too low GW [As], <50ppb
88	GW	0									too low GW [As], <50ppb
89	GW	0									too low GW [As], <50ppb
90	GW	47									too low GW [As], <50ppb
104	GW	28	2.67	15.5	7.5	7.2-7.8	425	240	0	0.13	too low GW [As], <50ppb
110	GW	41			7.5	7.8-8.4	425	240	0		too low GW [As], <50ppb
111	GW	19	3.56 OR	25.2	7.5	7.8-8.4	425	240	0	0.23	too low GW [As], <50ppb

Appendix H: Data of Samples Not Used in Present Study

Filter No.	Date	District	VDC	Ward No.	Tole	Type of KAF	Name of the Household owner
1	Jan. 9, 2011	Nawalparasi	Tilakpur	7	Patkhauli	Concrete square	Netra Narayan Chaudhary
2	Jan. 9, 2011	Nawalparasi	Tilakpur	7	Patkhauli	Concrete square	Amar Narayan Chaudhary
3	Jan. 9, 2011	Nawalparasi	Tilakpur	7	Patkhauli	Plastic square	Baliram Chaudhary
16	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Plastic square	Bishwonath Chaudhary
19	Jan.11, 2011	Nawalparasi	Pratappur	1	Khaireni/Tharu	Gem 505	Govinda Chaudhary
30	Low Arsenic						
38	Jan. 14, 2011	Nawalparasi	Swathi	8	Swathi	Gem 505	Sima Chaudhary
39	Jan. 14, 2011	Nawalparasi	Swathi	8	Swathi	Gem 505	
40	Jan. 14, 2011	Nawalparasi	Swathi	8	Swathi	Gem 505	
57	Jan. 16, 2011	Nawalparasi	Bhutaha				
59	Jan. 16, 2011	Nawalparasi	Bhutaha				
64	Jan. 17, 2011	Nawalparasi	Tilakpur	7	Pathkhouli	Gem 505	Dinesh Chaudhary
67	Jan. 17, 2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Nawodurga Primary School
68	Jan. 17, 2011	Nawalparasi	Sunwal	3	Naduwa	Gem 505	Nawodurga Primary School
69	Jan. 17, 2011						
75	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Krishna Pageni
77	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Ram Prasad Mishra
78	Jan. 18, 2011	Nawalparasi	Makar	8	Laghuna	Gem 505	Uday Bdr. Lamichane
88	Jan. 20, 2011	Rupandehi	Rudrapur	4	Gargare	Concrete square	Buddhadeep English Boarding School
89	Jan. 20, 2011	Rupandehi	Rudrapur	4	Gargare	Concrete square	Buddhadeep English Boarding School
90	Jan. 20, 2011	Rupandehi	Rudrapur	4	Bargadhawa	Concrete square	Dinanath Acharya
104	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Shiwangadh	Gem 505	Sukhed Ansari
110	Jan. 22, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Hari Harijan
111	Jan. 23, 2011	Nawalparasi	Ramgram Municipality	13	Paratikar	Gem 505	Laxman Harijan

Filter No.	KAF provided by	Installed Date	Quality of Iron nails	No. of Households	Number of Users
1	Local entrepreneur (Raju Bishwo)	2007	Well rusted	1	6
2	Local entrepreneur (Raju Bishwo)	2007	Well rusted	1	2
3	NRCS	2003	Well rusted	1	6
16	Filters for families	2003	Well rusted	1	7
19	Filters for families	2007	Well rusted	1	4
30					
38	DWSS	2010	Well rusted	1	4
39	DWSS	2010	Well rusted	1	
40	DWSS	2010	Well rusted	1	
57					
59				1	
64	DWSS	2010	Well rusted	1	2
67	Filters for families	2007	Well rusted	1	120 students
68	Filters for families	2007	Well rusted	1	120 students
69	No arsenic		Well rusted		
75	DWSS	2010	Well rusted	1	4
77	DWSS	2010	Well rusted	1	3
78	DWSS	2010	Well rusted	1	8
88	Local Entrepreneur (Narayan Pandey)	2007	Well rusted	1	total 42 teachers and 900 student
89	Local Entrepreneur (Narayan Pandey)	2007	Well rusted	1	total 42 teachers and 900 student
90	Local Entrepreneur (Narayan Pandey)	2003	Well rusted	1	5
104	Filters for families	2005	Well rusted	1	6
110	Filters for families	2005	Well rusted	1	5
111	Filters for families	2005	Well rusted	1	4

Filter No.	filter water per day(in. lit)	Filte use	Filter cleaning Frequency	Date of last cleaning
1	30	everyday	When water is insufficient once in every 2-3 months	a month back
2	10	everyday	when flow rate drops/once in every 2-3 months	15 days back
3	45	everyday	once in a month	a month back
16	40	everyday	once in every 4 month	2 months back
19	30	everyday	once in a two weeks	10 days back
30				
38	20	everyday	once in every two weeks	10 days back
39				
40				
57				
59				
64	40	everyday	Never	Never
67	over 50 litre	not use during vacation	once in every 2-3 months	45 days back
68	over 50 litre	not use during vacation	once in every 2-3 months	45 days back
69				
75	30	everyday	once in every 2-3 months	20 days back
77	30	everyday	once in every 2-3 months	10 days back
78	over 50 litre	everyday	once in every 2-3 months	a month back
88	over 50 litre	everyday	once in every 2-3 months	20 days back
89	over 50 litre	everyday	once in every 2-3 months	20 days back
90	40	everyday	once in every 2-3 months	45 days back
104	30	everyday	once in every 2-3 months	3 months back
110	20	everyday	once in a month	15 days back
111	20	everyday	once in every 2-3 months	2 months back

Filter No.	Remarks
1	Arsenic concentration below 50 ppb
2	Arsenic concentration below 50 ppb
3	
16	
19	
30	Low arsenic
38	Low As concentration in GW
39	Low As concentration in GW
40	Low As concentration in GW
57	
59	Low Arsenic in GW
64	
67	
68	
69	Low Arsenic in GW
75	
77	
78	
88	
89	
90	
104	
110	
111	